Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Androstenedione Metabolism
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-09-15
Androstenedione is an endogenous weak androgen steroid hormone that is a precursor of testosterone and other androgens, as well as of estrogens like estrone . Its metabolism occurs primarily in the endoplasmic reticulum (membrane-associated enzymes are coloured dark green in the image). Conversion of androstenedione to testosterone requires the enzyme testosterone 17-beta-dehydrogenase 3. Conversion of androstenedione to estrone involves three successive reactions catalyzed by the enzyme aromatase (cytochrome P450 19A1). Androstenedione can also be converted into etiocholanolone glucuronide, androsterone glucuronide, and adrenosterone. The three-reaction subpathway to synthesize etiocholanolone glucuronide begins with the enzyme 3-oxo-5-beta-steroid 4-dehydrogenase catalyzing the conversion of androstenedione to etiocholanedione. This is followed by the conversion of etiocholanedione to etiocholanolone which is catalyzed by aldo-keto reductase family 1 member C4. Lastly, the large membrane-associated multimer UDP-glucuronosyltransferase 1-1 catalyzes the conversion of etiocholanolone to etiocholanolone glucuronide. The three-reaction subpathway to synthesize androsterone glucuronide begins with the conversion of androstenedione to androstanedione via 3-oxo-5-alpha-steroid 4-dehydrogenase 1. Anstrostanedione is then converted into androsterone via aldo-keto reductase family 1 member C4. The last reaction to form androsterone glucuronide is catalyzed by the large multimer UDP-glucuronosyltransferase 1-1. The two-reaction subpathway to synthesize adrenosterone begins in the mitochondrial inner membrane where androstenedione is first converted into 11beta-hydroxyandrost-4-ene-3,17-dione by the enzyme cytochrome P450 11B1. Following transport to the endoplasmic reticulum, 11beta-hydroxyandrost-4-ene-3,17-dione is converted into adrenosterone via corticosteroid 11-beta-dehydrogenase isozyme 1.
References
Androstenedione Metabolism References
Harhay GP, Sonstegard TS, Keele JW, Heaton MP, Clawson ML, Snelling WM, Wiedmann RT, Van Tassell CP, Smith TP: Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics. 2005 Nov 23;6:166. doi: 10.1186/1471-2164-6-166.
Pubmed: 16305752
Yamauchi K, Yamamoto T, Hayashi H, Koya S, Takikawa H, Toyoshima K, Horiuchi R: Sequence of membrane-associated thyroid hormone binding protein from bovine liver: its identity with protein disulphide isomerase. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1485-92. doi: 10.1016/0006-291x(87)90817-5.
Pubmed: 3619939
Wetterau JR, Combs KA, Spinner SN, Joiner BJ: Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990 Jun 15;265(17):9800-7.
Pubmed: 2351674
Galat A, Bouet F: Cyclophilin-B is an abundant protein whose conformation is similar to cyclophilin-A. FEBS Lett. 1994 Jun 20;347(1):31-6. doi: 10.1016/0014-5793(94)00501-x.
Pubmed: 8013656
Bose S, Mucke M, Freedman RB: The characterization of a cyclophilin-type peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen. Biochem J. 1994 Jun 15;300 ( Pt 3):871-5. doi: 10.1042/bj3000871.
Pubmed: 8010972
Ferrari DM, Nguyen Van P, Kratzin HD, Soling HD: ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Eur J Biochem. 1998 Aug 1;255(3):570-9. doi: 10.1046/j.1432-1327.1998.2550570.x.
Pubmed: 9738895
Hinshelwood MM, Corbin CJ, Tsang PC, Simpson ER: Isolation and characterization of a complementary deoxyribonucleic acid insert encoding bovine aromatase cytochrome P450. Endocrinology. 1993 Nov;133(5):1971-7. doi: 10.1210/endo.133.5.8404644.
Pubmed: 8404644
Vanselow J, Furbass R: Novel aromatase transcripts from bovine placenta contain repeated sequence motifs. Gene. 1995 Mar 10;154(2):281-6. doi: 10.1016/0378-1119(94)00753-f.
Pubmed: 7890178
Furbass R, Kalbe C, Vanselow J: Tissue-specific expression of the bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative first exons. Endocrinology. 1997 Jul;138(7):2813-9. doi: 10.1210/endo.138.7.5257.
Pubmed: 9202222
Morohashi K, Yoshioka H, Gotoh O, Okada Y, Yamamoto K, Miyata T, Sogawa K, Fujii-Kuriyama Y, Omura T: Molecular cloning and nucleotide sequence of DNA of mitochondrial cytochrome P-450(11 beta) of bovine adrenal cortex. J Biochem. 1987 Sep;102(3):559-68. doi: 10.1093/oxfordjournals.jbchem.a122089.
Pubmed: 3429448
Kirita S, Morohashi K, Hashimoto T, Yoshioka H, Fujii-Kuriyama Y, Omura T: Expression of two kinds of cytochrome P-450(11 beta) mRNA in bovine adrenal cortex. J Biochem. 1988 Nov;104(5):683-6. doi: 10.1093/oxfordjournals.jbchem.a122533.
Pubmed: 3266212
Chua SC, Szabo P, Vitek A, Grzeschik KH, John M, White PC: Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proc Natl Acad Sci U S A. 1987 Oct;84(20):7193-7. doi: 10.1073/pnas.84.20.7193.
Pubmed: 3499608
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0030406
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings