Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ammonia Recycling
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-16
Ammonia can be rerouted from the urine and recycled into the body for use in nitrogen metabolism. Glutamate and glutamine play an important role in this process. There are many other processes that act to recycle ammonia. asparaginase recycles ammonia from asparagine. Glycine cleavage system generates ammonia from glycine. Histidine ammonia lyase forms ammonia from histidine. Serine dehydratase also produces ammonia by cleaving serine.
References
Ammonia Recycling References
Ogawa H, Miller DA, Dunn T, Su Y, Burcham JM, Peraino C, Fujioka M, Babcock K, Pitot HC: Isolation and nucleotide sequence of the cDNA for rat liver serine dehydratase mRNA and structures of the 5' and 3' flanking regions of the serine dehydratase gene. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5809-13. doi: 10.1073/pnas.85.16.5809.
Pubmed: 3413060
Ogawa H, Fujioka M, Matsuda Y, Su Y, Dunn T, Miller DA, Pitot HC: Sequence of the rat serine dehydratase gene. Nucleic Acids Res. 1988 Nov 25;16(22):10921-3. doi: 10.1093/nar/16.22.10921.
Pubmed: 3205731
Noda C, Ito K, Nakamura T, Ichihara A: Primary structure of rat liver serine dehydratase deduced from the cDNA sequence. FEBS Lett. 1988 Jul 18;234(2):331-5. doi: 10.1016/0014-5793(88)80110-8.
Pubmed: 3391277
Bush LA, Herr JC, Wolkowicz M, Sherman NE, Shore A, Flickinger CJ: A novel asparaginase-like protein is a sperm autoantigen in rats. Mol Reprod Dev. 2002 Jun;62(2):233-47. doi: 10.1002/mrd.10092.
Pubmed: 11984834
Dieterich DC, Landwehr M, Reissner C, Smalla KH, Richter K, Wolf G, Bockers TM, Gundelfinger ED, Kreutz MR: Gliap--a novel untypical L-asparaginase localized to rat brain astrocytes. J Neurochem. 2003 Jun;85(5):1117-25. doi: 10.1046/j.1471-4159.2003.01766.x.
Pubmed: 12753071
Hutson RG, Kilberg MS: Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J. 1994 Dec 15;304 ( Pt 3):745-50. doi: 10.1042/bj3040745.
Pubmed: 7818476
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Taylor RG, Lambert MA, Sexsmith E, Sadler SJ, Ray PN, Mahuran DJ, McInnes RR: Cloning and expression of rat histidase. Homology to two bacterial histidases and four phenylalanine ammonia-lyases. J Biol Chem. 1990 Oct 25;265(30):18192-9.
Pubmed: 2120224
Taylor RG, McInnes RR: Site-directed mutagenesis of conserved serines in rat histidase. Identification of serine 254 as an essential active site residue. J Biol Chem. 1994 Nov 4;269(44):27473-7.
Pubmed: 7961661
Nyunoya H, Broglie KE, Widgren EE, Lusty CJ: Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346-56.
Pubmed: 2991241
Lagace M, Howell BW, Burak R, Lusty CJ, Shore GC: Rat carbamyl-phosphate synthetase I gene. Promoter sequence and tissue-specific transcriptional regulation in vitro. J Biol Chem. 1987 Aug 5;262(22):10415-8.
Pubmed: 3038878
Pekkala S, Martinez AI, Barcelona B, Gallego J, Bendala E, Yefimenko I, Rubio V, Cervera J: Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase. Biochem J. 2009 Nov 11;424(2):211-20. doi: 10.1042/BJ20090888.
Pubmed: 19754428
Amuro N, Ooki K, Ito A, Goto Y, Okazaki T: Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acids Res. 1989 Mar 25;17(6):2356. doi: 10.1093/nar/17.6.2356.
Pubmed: 2704625
Das AT, Moerer P, Charles R, Moorman AF, Lamers WH: Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acids Res. 1989 Mar 25;17(6):2355. doi: 10.1093/nar/17.6.2355.
Pubmed: 2704624
Chung-Bok MI, Vincent N, Jhala U, Watford M: Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J. 1997 May 15;324 ( Pt 1):193-200. doi: 10.1042/bj3240193.
Pubmed: 9164856
Smith EM, Watford M: Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. J Biol Chem. 1990 Jun 25;265(18):10631-6.
Pubmed: 2191954
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000009
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings