Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Phenylalanine and Tyrosine Metabolism
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-30
In man, phenylalanine is an essential amino acid which must be supplied in the dietary proteins. Once in the body, phenylalanine may follow any of three paths. It may be (1) incorporated into cellular proteins, (2) converted to phenylpyruvic acid, or (3) converted to tyrosine. Tyrosine is found in many high protein food products such as soy products, chicken, turkey, fish, peanuts, almonds, avocados, bananas, milk, cheese, yogurt, cottage cheese, lima beans, pumpkin seeds, and sesame seeds. Tyrosine can be converted into L-DOPA, which is further converted into dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline). Depicted in this pathway is the conversion of phenylalanine to phenylpyruvate (via amino acid oxidase or tyrosine amino transferase acting on phenylalanine), the incorporation of phenylalanine and/or tyrosine into polypeptides (via tyrosyl tRNA synthetase and phenylalyl tRNA synthetase) and the conversion of phenylalanine to tyrosine via phenylalanine hydroxylase. This reaction functions both as the first step in tyrosine/phenylalanine catabolism by which the body disposes of excess phenylalanine, and as a source of the amino acid tyrosine. The decomposition of L-tyrosine begins with an α-ketoglutarate dependent transamination through the tyrosine transaminase to para-hydroxyphenylpyruvate. The next oxidation step catalyzed by p-hydroxylphenylpyruvate-dioxygenase creates homogentisate. In order to split the aromatic ring of homogentisate, a further dioxygenase, homogentistate-oxygenase, is required to create maleylacetoacetate. Fumarylacetate is created by the action maleylacetoacetate-cis-trans-isomerase through rotation of the carboxyl group created from the hydroxyl group via oxidation. This cis-trans-isomerase contains glutathione as a coenzyme. Fumarylacetoacetate is finally split via fumarylacetoacetate-hydrolase into fumarate (also a metabolite of the citric acid cycle) and acetoacetate (3-ketobutyroate).
References
Phenylalanine and Tyrosine Metabolism References
Pave-Preux M, Ferry N, Bouguet J, Hanoune J, Barouki R: Nucleotide sequence and glucocorticoid regulation of the mRNAs for the isoenzymes of rat aspartate aminotransferase. J Biol Chem. 1988 Nov 25;263(33):17459-66.
Pubmed: 3182856
Horio Y, Tanaka T, Taketoshi M, Nagashima F, Tanase S, Morino Y, Wada H: Rat cytosolic aspartate aminotransferase: molecular cloning of cDNA and expression in Escherichia coli. J Biochem. 1988 May;103(5):797-804. doi: 10.1093/oxfordjournals.jbchem.a122349.
Pubmed: 3053674
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kuwahara T, Takamoto S, Ito A: Primary structure of rat monoamine oxidase A deduced from cDNA and its expression in rat tissues. Agric Biol Chem. 1990 Jan;54(1):253-7.
Pubmed: 1368522
Kwan SW, Abell CW: cDNA cloning and sequencing of rat monoamine oxidase A: comparison with the human and bovine enzymes. Comp Biochem Physiol B. 1992 May;102(1):143-7. doi: 10.1016/0305-0491(92)90286-z.
Pubmed: 1526120
Tsugeno Y, Ito A: A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J Biol Chem. 1997 May 30;272(22):14033-6. doi: 10.1074/jbc.272.22.14033.
Pubmed: 9162023
Grange T, Guenet C, Dietrich JB, Chasserot S, Fromont M, Befort N, Jami J, Beck G, Pictet R: Complete complementary DNA of rat tyrosine aminotransferase messenger RNA. Deduction of the primary structure of the enzyme. J Mol Biol. 1985 Jul 20;184(2):347-50. doi: 10.1016/0022-2836(85)90386-9.
Pubmed: 2863382
Hargrove JL, Scoble HA, Mathews WR, Baumstark BR, Biemann K: The structure of tyrosine aminotransferase. Evidence for domains involved in catalysis and enzyme turnover. J Biol Chem. 1989 Jan 5;264(1):45-53.
Pubmed: 2562840
Dahl HH, Mercer JF: Isolation and sequence of a cDNA clone which contains the complete coding region of rat phenylalanine hydroxylase. Structural homology with tyrosine hydroxylase, glucocorticoid regulation, and use of alternate polyadenylation sites. J Biol Chem. 1986 Mar 25;261(9):4148-53.
Pubmed: 2869038
Wretborn M, Humble E, Ragnarsson U, Engstrom L: Amino acid sequence at the phosphorylated site of rat liver phenylalanine hydroxylase and phosphorylation of a corresponding synthetic peptide. Biochem Biophys Res Commun. 1980 Mar 28;93(2):403-8. doi: 10.1016/0006-291x(80)91091-8.
Pubmed: 7387651
Robson KJ, Beattie W, James RJ, Cotton RC, Morgan FJ, Woo SL: Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones. Biochemistry. 1984 Nov 20;23(24):5671-5. doi: 10.1021/bi00319a001.
Pubmed: 6098294
Mirande M, Le Corre D, Louvard D, Reggio H, Pailliez JP, Waller JP: Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Exp Cell Res. 1985 Jan;156(1):91-102. doi: 10.1016/0014-4827(85)90264-2.
Pubmed: 3880707
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Lee MH, Zhang ZH, MacKinnon CH, Baldwin JE, Crouch NP: The C-terminal of rat 4-hydroxyphenylpyruvate dioxygenase is indispensable for enzyme activity. FEBS Lett. 1996 Sep 16;393(2-3):269-72. doi: 10.1016/0014-5793(96)00902-7.
Pubmed: 8814303
Neve S, Aarenstrup L, Tornehave D, Rahbek-Nielsen H, Corydon TJ, Roepstorff P, Kristiansen K: Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxyphenylpyruvate dioxygenase. Cell Biol Int. 2003;27(8):611-24.
Pubmed: 12867153
Yang C, Pflugrath JW, Camper DL, Foster ML, Pernich DJ, Walsh TA: Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases. Biochemistry. 2004 Aug 17;43(32):10414-23. doi: 10.1021/bi049323o.
Pubmed: 15301540
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000008
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings