Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Histidine Metabolism
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2023-10-28
Histidine, an amino acid, plays an important role in the creation of proteins. It is unique as an amino acid as it is needed for nucleotide formation. The biosynthesis of histidine in adults begins with the condensation of ATP and PRPP (phosphoribosyl pyrophosphate) to form n-5-phosphoribosyl 1-pyrophosphate (phosphoribosyl-ATP). It is also worth noting that PRPP is the beginning compound for purine and pyrimidine creation. Subsequent histidine biosynthetic steps (from phosphoribosyl-ATP onwards) are likely to occur in the intestinal microflora. Elimination of the phosphate and the opening of the ring in phosphoribosyl-ATP forms phosphoribosyl-forminino-5-aminoimidazole-4-carboxamide ribonucleotide(phosphoribosyl-forminino-AICAR-phosphate). This is subsequently converted to 5-phosphoribulosyl-forminino-5-aminoimidazole-4-carboxamide ribonucleotide. Cleavage of this compound creates imidazole glycerol phosphate and AICAR (aminoimidazolecarboxamide ribonucleotide) with glutamine being involved as an amino group donor. AICAR is used again through the purine pathway while the imidazole glycerol phosphate is converted to imidazole acetal phosphate. Transamination yields histidinol phosphate which is then turned into histidinol, and then, finally, to histidine. L-histidine is catalyzed by histidine ammonia-lyase into urocanic acid. This acid is then converted to 4-imidazolone-5-propionic acid by urocanate hydratase. 4-imidazolone-5-propionic acid is then converted to formiminoglutamic acid, using the enzyme probable imidazolonepropionase. One last reaction occurs to allow for glutamate metabolism, as formiminoglutamic acid is converted to l-glutamic acid through the use of formimidoyltransferase-cyclodeaminase. Histidine is also a precursor for carnosine biosynthesis(via carnosine synthase), with beta-alanine being the rate limiting precursor. Anserine can be synthesized either from carnosine via carnosine N-methyltransferase or from 1-methylhistidine via carnosine synthase. Inversely, cytosolic non-specific dipeptidase catalyzes the synthesis of 1-methylhistidine from anserine.
Histidine is found in meat, seeds, nuts and whole grains. It is a very important amino acid in keeping a pH of 7 in the body, as it acts as a shuttle for protons to maintain a balance of acids and bases in the blood and different tissues.
References
Histidine Metabolism References
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T: Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem. 2003 Feb 21;278(8):6521-31. doi: 10.1074/jbc.M209764200. Epub 2002 Dec 6.
Pubmed: 12473676
Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA: Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7159-64. doi: 10.1073/pnas.0600895103. Epub 2006 Apr 25.
Pubmed: 16641100
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Tang J, Gary JD, Clarke S, Herschman HR: PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem. 1998 Jul 3;273(27):16935-45. doi: 10.1074/jbc.273.27.16935.
Pubmed: 9642256
Frankel A, Clarke S: PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem. 2000 Oct 20;275(42):32974-82. doi: 10.1074/jbc.M006445200.
Pubmed: 10931850
Singh V, Miranda TB, Jiang W, Frankel A, Roemer ME, Robb VA, Gutmann DH, Herschman HR, Clarke S, Newsham IF: DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene. 2004 Oct 14;23(47):7761-71. doi: 10.1038/sj.onc.1208057.
Pubmed: 15334060
Joseph DR, Sullivan PM, Wang YM, Kozak C, Fenstermacher DA, Behrendsen ME, Zahnow CA: Characterization and expression of the complementary DNA encoding rat histidine decarboxylase. Proc Natl Acad Sci U S A. 1990 Jan;87(2):733-7. doi: 10.1073/pnas.87.2.733.
Pubmed: 2300558
Characterization and expression of the complementary DNA encoding rat histidine decarboxylase. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7346.
Pubmed: 2402512
Sullivan PM, Petrusz P, Szpirer C, Joseph DR: Alternative processing of androgen-binding protein RNA transcripts in fetal rat liver. Identification of a transcript formed by trans splicing. J Biol Chem. 1991 Jan 5;266(1):143-54.
Pubmed: 1702422
Takemura M, Tanaka T, Taguchi Y, Imamura I, Mizuguchi H, Kuroda M, Fukui H, Yamatodani A, Wada H: Histamine N-methyltransferase from rat kidney. Cloning, nucleotide sequence, and expression in Escherichia coli cells. J Biol Chem. 1992 Aug 5;267(22):15687-91.
Pubmed: 1639806
Kitanaka N, Kitanaka J, Oue T, Tada Y, Tanaka T, Takemura M: Genomic structure of the rat and mouse histamine N-methyltransferase gene. Jpn J Pharmacol. 2002 Jan;88(1):85-92. doi: 10.1254/jjp.88.85.
Pubmed: 11855681
Kuwahara T, Takamoto S, Ito A: Primary structure of rat monoamine oxidase A deduced from cDNA and its expression in rat tissues. Agric Biol Chem. 1990 Jan;54(1):253-7.
Pubmed: 1368522
Kwan SW, Abell CW: cDNA cloning and sequencing of rat monoamine oxidase A: comparison with the human and bovine enzymes. Comp Biochem Physiol B. 1992 May;102(1):143-7. doi: 10.1016/0305-0491(92)90286-z.
Pubmed: 1526120
Tsugeno Y, Ito A: A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J Biol Chem. 1997 May 30;272(22):14033-6. doi: 10.1074/jbc.272.22.14033.
Pubmed: 9162023
Jones DE Jr, Brennan MD, Hempel J, Lindahl R: Cloning and complete nucleotide sequence of a full-length cDNA encoding a catalytically functional tumor-associated aldehyde dehydrogenase. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1782-6. doi: 10.1073/pnas.85.6.1782.
Pubmed: 2831537
Hempel J, Harper K, Lindahl R: Inducible (class 3) aldehyde dehydrogenase from rat hepatocellular carcinoma and 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated liver: distant relationship to the class 1 and 2 enzymes from mammalian liver cytosol/mitochondria. Biochemistry. 1989 Feb 7;28(3):1160-7. doi: 10.1021/bi00429a034.
Pubmed: 2713359
Farres J, Guan KL, Weiner H: Primary structures of rat and bovine liver mitochondrial aldehyde dehydrogenases deduced from cDNA sequences. Eur J Biochem. 1989 Mar 1;180(1):67-74. doi: 10.1111/j.1432-1033.1989.tb14616.x.
Pubmed: 2540003
Farres J, Guan KL, Weiner H: Sequence of the signal peptide for rat liver mitochondrial aldehyde dehydrogenase. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1083-7. doi: 10.1016/0006-291x(88)90740-1.
Pubmed: 3342060
Taylor RG, Lambert MA, Sexsmith E, Sadler SJ, Ray PN, Mahuran DJ, McInnes RR: Cloning and expression of rat histidase. Homology to two bacterial histidases and four phenylalanine ammonia-lyases. J Biol Chem. 1990 Oct 25;265(30):18192-9.
Pubmed: 2120224
Taylor RG, McInnes RR: Site-directed mutagenesis of conserved serines in rat histidase. Identification of serine 254 as an essential active site residue. J Biol Chem. 1994 Nov 4;269(44):27473-7.
Pubmed: 7961661
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000044
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings