
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Arachidonic Acid Metabolism
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-16
This pathway describes the production and subsequent metabolism of arachidonic acid, an omega-6 fatty acid. In resting cells arachidonic acid is present in the phospholipids (especially phosphatidylethanolamine and phosphatidylcholine) of membranes of the body’s cells, and is particularly abundant in the brain. Typically a receptor-dependent event, requiring a transducing G protein, initiates phospholipid hydrolysis and releases the fatty acid into the intracellular medium. Three enzymes mediate this deacylation reaction including phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD). Once released, free arachidonate has three possible fates: 1) reincorporation into phospholipids, 2) diffusion outside the cell, and 3) metabolism. Arachidonate metabolism is carried out by three distinct enzyme classes: cyclooxygenases, lipoxygenases, and cytochrome P450’s. Specifically, the enzymes cyclooxygenase and peroxidase lead to the synthesis of prostaglandin H2, which in turn is used to produce the prostaglandins, prostacyclin, and thromboxanes. The enzyme 5-lipoxygenase leads to 5-HPETE, which in turn is used to produce the leukotrienes, hydroxyeicosatetraenoic acids (HETEs) and lipoxins. Some arachidonic acid is converted into midchain HETEs, omega-chain HETEs, dihydroxyeicosatrienoic acids (DHETs), and epoxyeicosatrienoic acids (EETs) by cytochrome P450 epoxygenase hydroxylase activity. Several products of these pathways act within neurons to modulate the activities of ion channels, protein kinases, ion pumps, and neurotransmitter uptake systems, affecting processes such as cellular proliferation, inflammation, and hemostasis. The newly formed eicosanoids may also exit the cell of origin and bind to G-protein-coupled receptors present on nearby neurons or glial cells.
References
Arachidonic Acid Metabolism References
Chen L, Hardwick JP: Identification of a new P450 subfamily, CYP4F1, expressed in rat hepatic tumors. Arch Biochem Biophys. 1993 Jan;300(1):18-23. doi: 10.1006/abbi.1993.1003.
Pubmed: 8424651
LeBrun LA, Xu F, Kroetz DL, Ortiz de Montellano PR: Covalent attachment of the heme prosthetic group in the CYP4F cytochrome P450 family. Biochemistry. 2002 May 7;41(18):5931-7. doi: 10.1021/bi025527y.
Pubmed: 11980497
Makita N, Funk CD, Imai E, Hoover RL, Badr KF: Molecular cloning and functional expression of rat leukotriene A4 hydrolase using the polymerase chain reaction. FEBS Lett. 1992 Mar 16;299(3):273-7. doi: 10.1016/0014-5793(92)80130-9.
Pubmed: 1544505
Abe M, Shibata K, Saruwatar S, Soeda S, Shimeno H, Katsuragi T: cDNA cloning and expression of rat leukotriene C(4) synthase: elevated expression in rat basophilic leukemia-1 cells after treatment with retinoic acid. Prostaglandins Leukot Essent Fatty Acids. 2002 Nov;67(5):319-26.
Pubmed: 12445492
Griffiths SA, Manson MM: Rat liver gamma glutamyl transpeptidase mRNA differs in the 5' untranslated sequence from the corresponding kidney mRNA. Cancer Lett. 1989 Jul 1;46(1):69-74. doi: 10.1016/0304-3835(89)90217-6.
Pubmed: 2567622
Laperche Y, Bulle F, Aissani T, Chobert MN, Aggerbeck M, Hanoune J, Guellaen G: Molecular cloning and nucleotide sequence of rat kidney gamma-glutamyl transpeptidase cDNA. Proc Natl Acad Sci U S A. 1986 Feb;83(4):937-41. doi: 10.1073/pnas.83.4.937.
Pubmed: 2869484
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Yoshimura S, Takekoshi S, Watanabe K, Fujii-Kuriyama Y: Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the mRNA in selenium deficient rat liver. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1024-8. doi: 10.1016/0006-291x(88)90242-2.
Pubmed: 3408482
Ho YS, Howard AJ, Crapo JD: Nucleotide sequence of a rat glutathione peroxidase cDNA. Nucleic Acids Res. 1988 Jun 10;16(11):5207. doi: 10.1093/nar/16.11.5207.
Pubmed: 3387231
Reddy AP, Hsu BL, Reddy PS, Li NQ, Thyagaraju K, Reddy CC, Tam MF, Tu CP: Expression of glutathione peroxidase I gene in selenium-deficient rats. Nucleic Acids Res. 1988 Jun 24;16(12):5557-68. doi: 10.1093/nar/16.12.5557.
Pubmed: 2838821
Urade Y, Nagata A, Suzuki Y, Fujii Y, Hayaishi O: Primary structure of rat brain prostaglandin D synthetase deduced from cDNA sequence. J Biol Chem. 1989 Jan 15;264(2):1041-5.
Pubmed: 2642896
Igarashi M, Nagata A, Toh H, Urade Y, Hayaishi O: Structural organization of the gene for prostaglandin D synthase in the rat brain. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5376-80. doi: 10.1073/pnas.89.12.5376.
Pubmed: 1608945
Wait R, Gianazza E, Eberini I, Sironi L, Dunn MJ, Gemeiner M, Miller I: Proteins of rat serum, urine, and cerebrospinal fluid: VI. Further protein identifications and interstrain comparison. Electrophoresis. 2001 Aug;22(14):3043-52. doi: 10.1002/1522-2683(200108)22:14<3043::AID-ELPS3043>3.0.CO;2-M.
Pubmed: 11565799
Mao J, Duan WR, Albarracin CT, Parmer TG, Gibori G: Isolation and characterization of a rat luteal cDNA encoding 20 alpha-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1289-95. doi: 10.1006/bbrc.1994.1844.
Pubmed: 8024573
Miura R, Shiota K, Noda K, Yagi S, Ogawa T, Takahashi M: Molecular cloning of cDNA for rat ovarian 20 alpha-hydroxysteroid dehydrogenase (HSD1). Biochem J. 1994 Apr 15;299 ( Pt 2):561-7. doi: 10.1042/bj2990561.
Pubmed: 8172618
Tone Y, Miyata A, Hara S, Yukawa S, Tanabe T: Abundant expression of thromboxane synthase in rat macrophages. FEBS Lett. 1994 Mar 7;340(3):241-4. doi: 10.1016/0014-5793(94)80146-0.
Pubmed: 8131852
Tsutsumi E, Takeuchi K, Abe T, Takahashi N, Kato T, Taniyama Y, Ikeda Y, Ito S, Abe K: Rat kidney thromboxane synthase: cDNA cloning and gene expression regulation in hydronephrotic kidney. Prostaglandins. 1997 Jun;53(6):423-31. doi: 10.1016/s0090-6980(97)00059-2.
Pubmed: 9261862
DeJong JL, Morgenstern R, Jornvall H, DePierre JW, Tu CP: Gene expression of rat and human microsomal glutathione S-transferases. J Biol Chem. 1988 Jun 15;263(17):8430-6.
Pubmed: 3372534
Morgenstern R, DePierre JW, Jornvall H: Microsomal glutathione transferase. Primary structure. J Biol Chem. 1985 Nov 15;260(26):13976-83.
Pubmed: 3932348
Wermuth B, Mader-Heinemann G, Ernst E: Cloning and expression of carbonyl reductase from rat testis. Eur J Biochem. 1995 Mar 1;228(2):473-9.
Pubmed: 7705364
Aoki H, Okada T, Mizutani T, Numata Y, Minegishi T, Miyamoto K: Identification of two closely related genes, inducible and noninducible carbonyl reductases in the rat ovary. Biochem Biophys Res Commun. 1997 Jan 23;230(3):518-23. doi: 10.1006/bbrc.1996.5995.
Pubmed: 9015353
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000075
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings