Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Propanoate Metabolism
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-09-12
This pathway depicts the metabolism of propionic acid. Propionic acid in mammals typically arises from the production of the acid by gut or skin microflora. Propionic acid producing bacteria (Propionibacterium sp.) are particularly common in sweat glands of mammals. After entering a cell, the propionic acid (propanoate) then enters the mitochondria where it is converted into propanol adenylate (or propionyl adenylate or propionyl-AMP) via propionyl-CoA synthetase and acetyl-CoA synthetase. The propionyl adenylate then is converted into propionyl coenzyme A (propionyl-CoA) via the same pair of enzymes. Propionyl-CoA is a relatively common compound that can also arise from the metabolic breakdown of fatty acids containing odd numbers of carbon atoms. Propionyl-CoA is also known to arise from the breakdown of some amino acids. Since propanoate has three carbons, propionyl-CoA cannot directly enter the beta-oxidation cycle (which requires two carbons from acetyl-CoA). Therefore, in most vertebrates, propionyl-CoA is carboxylated into D-methylmalonyl-CoA via propionyl-CoA carboxylase. The resulting compound is isomerized into L-methylmalonyl-CoA via methylmalonyl-CoA epimerase. A vitamin B12-dependent enzyme, called methylmalonyl CoA mutase catalyzes the rearrangement of L-methylmalonyl-CoA to succinyl-CoA, which is an intermediate of the citric acid cycle. Also depicted in this pathway is another propionic acid homolog called hydroxypropanoic acid (hydroxypropionate). This compound is also produced by bacteria and imported into cells. Hydroxypropionate can be converted into 3-hydroxypropionyl-CoA. This compound can be either enzymatically converted to acryloyl-CoA and then to propionyl-CoA or it can spontaneously convert to malonyl-CoA. Malonyl-CoA can convert into acetyl-CoA (via acetyl-CoA carboxylase in the cytoplasm or malonyl carboxylase in the mitochondria) whereupon it may enter a variety of pathways. In a rare genetic metabolic disorder called propionic acidemia, propionate acts as a metabolic toxin in liver cells by accumulating in the liver mitochondria as propionyl-CoA and its derivative methylcitrate. Both propionyl-CoA and methylcitrate are known TCA inhibitors. Glial cells are particularly susceptible to propionyl-CoA accumulation. In fact, when propionate is infused into rat brains and take up by the glial cells, it leads to behavioural changes that resemble autism (PMID: 16950524).
References
Propanoate Metabolism References
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Voilley N, Roduit R, Vicaretti R, Bonny C, Waeber G, Dyck JR, Lopaschuk GD, Prentki M: Cloning and expression of rat pancreatic beta-cell malonyl-CoA decarboxylase. Biochem J. 1999 May 15;340 ( Pt 1):213-7.
Pubmed: 10229677
Dyck JR, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R, Singh D, Hopkins TA, Voilley N, Prentki M, Lopaschuk GD: Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J. 2000 Sep 1;350 Pt 2:599-608.
Pubmed: 10947976
Lee GY, Bahk YY, Kim YS: Rat malonyl-CoA decarboxylase; cloning, expression in E. coli and its biochemical characterization. J Biochem Mol Biol. 2002 Mar 31;35(2):213-9.
Pubmed: 12297032
Lopez-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH: Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784-8. doi: 10.1073/pnas.85.16.5784.
Pubmed: 2901088
Luo XC, Park K, Lopez-Casillas F, Kim KH: Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042-6. doi: 10.1073/pnas.86.11.4042.
Pubmed: 2566999
Saad Y, Garrett MR, Manickavasagam E, Yerga-Woolwine S, Farms P, Radecki T, Joe B: Fine-mapping and comprehensive transcript analysis reveals nonsynonymous variants within a novel 1.17 Mb blood pressure QTL region on rat chromosome 10. Genomics. 2007 Mar;89(3):343-53. doi: 10.1016/j.ygeno.2006.12.005. Epub 2007 Jan 10.
Pubmed: 17218081
Fukao T, Kamijo K, Osumi T, Fujiki Y, Yamaguchi S, Orii T, Hashimoto T: Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat mitochondrial acetoacetyl-CoA thiolase. J Biochem. 1989 Aug;106(2):197-204. doi: 10.1093/oxfordjournals.jbchem.a122832.
Pubmed: 2478525
Kedishvili NY, Popov KM, Rougraff PM, Zhao Y, Crabb DW, Harris RA: CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily. cDNA cloning, evolutionary relationships, and tissue distribution. J Biol Chem. 1992 Sep 25;267(27):19724-9.
Pubmed: 1527093
Goodwin GW, Rougraff PM, Davis EJ, Harris RA: Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase. J Biol Chem. 1989 Sep 5;264(25):14965-71.
Pubmed: 2768248
Kedishvili NY, Popov KM, Harris RA: The effect of ligand binding on the proteolytic pattern of methylmalonate semialdehyde dehydrogenase. Arch Biochem Biophys. 1991 Oct;290(1):21-6. doi: 10.1016/0003-9861(91)90586-8.
Pubmed: 1898092
Medina-Kauwe LK, Tillakaratne NJ, Wu JY, Tobin AJ: A rat brain cDNA encodes enzymatically active GABA transaminase and provides a molecular probe for GABA-catabolizing cells. J Neurochem. 1994 Apr;62(4):1267-75. doi: 10.1046/j.1471-4159.1994.62041267.x.
Pubmed: 8133261
Kontani Y, Sakata SF, Matsuda K, Ohyama T, Sano K, Tamaki N: The mature size of rat 4-aminobutyrate aminotransferase is different in liver and brain. Eur J Biochem. 1999 Aug;264(1):218-22. doi: 10.1046/j.1432-1327.1999.00612.x.
Pubmed: 10447691
Tamaki N, Sakata SF, Matsuda K: Purification, properties, and sequencing of aminoisobutyrate aminotransferases from rat liver. Methods Enzymol. 2000;324:376-89. doi: 10.1016/s0076-6879(00)24247-x.
Pubmed: 10989446
Minami-Ishii N, Taketani S, Osumi T, Hashimoto T: Molecular cloning and sequence analysis of the cDNA for rat mitochondrial enoyl-CoA hydratase. Structural and evolutionary relationships linked to the bifunctional enzyme of the peroxisomal beta-oxidation system. Eur J Biochem. 1989 Oct 20;185(1):73-8. doi: 10.1111/j.1432-1033.1989.tb15083.x.
Pubmed: 2806264
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Muller-Newen G, Janssen U, Stoffel W: Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue. Eur J Biochem. 1995 Feb 15;228(1):68-73. doi: 10.1111/j.1432-1033.1995.tb20230.x.
Pubmed: 7883013
Hawes JW, Jaskiewicz J, Shimomura Y, Huang B, Bunting J, Harper ET, Harris RA: Primary structure and tissue-specific expression of human beta-hydroxyisobutyryl-coenzyme A hydrolase. J Biol Chem. 1996 Oct 18;271(42):26430-4. doi: 10.1074/jbc.271.42.26430.
Pubmed: 8824301
Matsubara Y, Kraus JP, Ozasa H, Glassberg R, Finocchiaro G, Ikeda Y, Mole J, Rosenberg LE, Tanaka K: Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat liver medium chain acyl coenzyme A dehydrogenase. J Biol Chem. 1987 Jul 25;262(21):10104-8.
Pubmed: 3611054
Inagaki T, Ohishi N, Tsukagoshi N, Udaka S, Ghisla S, Yagi K: Structurally different rat liver medium-chain acyl CoA dehydrogenases directed by complementary DNAs differing in their 5'-region. Biochim Biophys Acta. 1991 Apr 29;1077(3):285-90. doi: 10.1016/0167-4838(91)90542-8.
Pubmed: 2029527
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000016
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings