Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Trehalose Degradation
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-16
Trehalose, also known as mycose or tremalose, is a sugar consisting of two 1-1 alpha bonded glucose molecules. It is produced by some plants, bacteria, fungi and invertebrates, and can be used as a source of energy, such as for flight in insects, and as a survival mechanism to avoid freezing and dehydration.
After ingestion in the intestine lumen, trehalose can interact with trehalase, which exists in the brush border of the cells there. In a reaction that also requires a water molecule, it is broken. These are then transported into the epithelial cells along with a sodium ion by a sodium/glucose cotransporter, which can bring glucose up its gradient along with sodium moving down its gradient. Once inside the cell, the glucose can then be transported out of the basolateral membrane by a solute carrier family 2 facilitated glucose transporter. From there, the glucose enters the blood stream, and is transported to liver hepatocytes. Once in the liver, glucokinase can use the energy and phosphate from a molecule of ATP to form glucose-6-phosphate, which then goes on to start the process of glycolysis.
References
Trehalose Degradation References
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Arden C, Baltrusch S, Agius L: Glucokinase regulatory protein is associated with mitochondria in hepatocytes. FEBS Lett. 2006 Apr 3;580(8):2065-70. doi: 10.1016/j.febslet.2006.03.009. Epub 2006 Mar 10.
Pubmed: 16542652
Andreone TL, Printz RL, Pilkis SJ, Magnuson MA, Granner DK: The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J Biol Chem. 1989 Jan 5;264(1):363-9.
Pubmed: 2909525
Hayzer DJ, Iynedjian PB: Alternative splicing of glucokinase mRNA in rat liver. Biochem J. 1990 Aug 15;270(1):261-3. doi: 10.1042/bj2700261.
Pubmed: 2396986
Shull GE, Greeb J, Lingrel JB: Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry. 1986 Dec 16;25(25):8125-32. doi: 10.1021/bi00373a001.
Pubmed: 3028470
Hara Y, Urayama O, Kawakami K, Nojima H, Nagamune H, Kojima T, Ohta T, Nagano K, Nakao M: Primary structures of two types of alpha-subunit of rat brain Na+,K+,-ATPase deduced from cDNA sequences. J Biochem. 1987 Jul;102(1):43-58. doi: 10.1093/oxfordjournals.jbchem.a122039.
Pubmed: 2822682
Herrera VL, Emanuel JR, Ruiz-Opazo N, Levenson R, Nadal-Ginard B: Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. J Cell Biol. 1987 Oct;105(4):1855-65. doi: 10.1083/jcb.105.4.1855.
Pubmed: 2822726
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kawakami K, Yagawa Y, Nagano K: Regulation of Na+,K(+)-ATPases. I. Cloning and analysis of the 5'-flanking region of the rat NKAA2 gene encoding the alpha 2 subunit. Gene. 1990 Jul 16;91(2):267-70. doi: 10.1016/0378-1119(90)90098-c.
Pubmed: 2170235
Shamraj OI, Lingrel JB: A putative fourth Na+,K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12952-6. doi: 10.1073/pnas.91.26.12952.
Pubmed: 7809153
Jimenez T, Sanchez G, Wertheimer E, Blanco G: Activity of the Na,K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction. 2010 May;139(5):835-45. doi: 10.1530/REP-09-0495. Epub 2010 Feb 23.
Pubmed: 20179187
Mercer RW, Schneider JW, Savitz A, Emanuel J, Benz EJ Jr, Levenson R: Rat-brain Na,K-ATPase beta-chain gene: primary structure, tissue-specific expression, and amplification in ouabain-resistant HeLa C+ cells. Mol Cell Biol. 1986 Nov;6(11):3884-90. doi: 10.1128/mcb.6.11.3884.
Pubmed: 3025616
Young RM, Shull GE, Lingrel JB: Multiple mRNAs from rat kidney and brain encode a single Na+,K+-ATPase beta subunit protein. J Biol Chem. 1987 Apr 5;262(10):4905-10.
Pubmed: 3031033
Mercer RW, Biemesderfer D, Bliss DP Jr, Collins JH, Forbush B 3rd: Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol. 1993 May;121(3):579-86. doi: 10.1083/jcb.121.3.579.
Pubmed: 8387529
Therien AG, Karlish SJ, Blostein R: Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J Biol Chem. 1999 Apr 30;274(18):12252-6. doi: 10.1074/jbc.274.18.12252.
Pubmed: 10212192
Arystarkhova E, Wetzel RK, Sweadner KJ: Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002 Mar;282(3):F393-407. doi: 10.1152/ajprenal.00146.2001.
Pubmed: 11832419
Lee WS, Kanai Y, Wells RG, Hediger MA: The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem. 1994 Apr 22;269(16):12032-9.
Pubmed: 8163506
Aoshima H, Yokoyama T, Tanizaki J, Izu H, Yamada M: The sugar specificity of Na+/glucose cotransporter from rat jejunum. Biosci Biotechnol Biochem. 1997 Jun;61(6):979-83. doi: 10.1271/bbb.61.979.
Pubmed: 9214758
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000467
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings