Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Rac 1 cell motility signaling pathway
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Signaling
Created: 2018-08-23
Last Updated: 2019-09-12
Rac1 is signaling protein part of the Rho GTPase family it is involved in cell motility, cell growth and cytoskeletal reorganization. Rac1 activity is regulated by guanine nucleotide exchange factors (GEFs). GEFs cause the release of GDP, allowing GDP to bind and Rac1 to become activated. GTPase-activated proteins (GAPs) down regulate the activity of GEFs be stimulating the inactivation via binding of GDP to Rac1. Active Rac1 stimulates proteins (ie. Wiskott–Aldrich syndrome) leading to actin polymerization. Actin polymerization is also regulated by cofilin. PAK proteins are critical effectors to cytoskeleton reorganization. PAK1 phosphorylates and activates LIM kinase. LIM kinase then phosphorylates cofilin, inactivating it leading to reduced actin filament severing and depolymerization, therby increasing polymerized actin. Rac1 stimulates lamellipodia and filopodia formation which are involved in cell movement and sensing the environment. It is proposed that PAK1 is involved in the phosphorylation of myosin light chain affecting myosin light chain phosphorylation.
References
Rac 1 cell motility signaling pathway References
Kubota T, Hikono H, Sasaki E, Sakurai M: Sequence of a bovine c-kit proto-oncogene cDNA. Gene. 1994 Apr 20;141(2):305-6. doi: 10.1016/0378-1119(94)90592-4.
Pubmed: 7512939
Davis AR, Clements MK, Bunger PL, Siemsen DW, Quinn MT: Cloning and characterization of bovine low molecular weight GTPases (Rac1 and Rac2) and rho GDP-dissociation inhibitor 2 (D4-GDI). Vet Immunol Immunopathol. 2000 May 23;74(3-4):285-301.
Pubmed: 10802295
Kobayashi K, Kuroda S, Fukata M, Nakamura T, Nagase T, Nomura N, Matsuura Y, Yoshida-Kubomura N, Iwamatsu A, Kaibuchi K: p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem. 1998 Jan 2;273(1):291-5. doi: 10.1074/jbc.273.1.291.
Pubmed: 9417078
Tan I, Lai J, Yong J, Li SF, Leung T: Chelerythrine perturbs lamellar actomyosin filaments by selective inhibition of myotonic dystrophy kinase-related Cdc42-binding kinase. FEBS Lett. 2011 May 6;585(9):1260-8. doi: 10.1016/j.febslet.2011.03.054. Epub 2011 Mar 30.
Pubmed: 21457715
Suchyta SP, Sipkovsky S, Halgren RG, Kruska R, Elftman M, Weber-Nielsen M, Vandehaar MJ, Xiao L, Tempelman RJ, Coussens PM: Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. Physiol Genomics. 2003 Dec 16;16(1):8-18. doi: 10.1152/physiolgenomics.00028.2003.
Pubmed: 14559974
Harhay GP, Sonstegard TS, Keele JW, Heaton MP, Clawson ML, Snelling WM, Wiedmann RT, Van Tassell CP, Smith TP: Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics. 2005 Nov 23;6:166. doi: 10.1186/1471-2164-6-166.
Pubmed: 16305752
Vandekerckhove J, Weber K: Actin amino-acid sequences. Comparison of actins from calf thymus, bovine brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin. Eur J Biochem. 1978 Oct 16;90(3):451-62. doi: 10.1111/j.1432-1033.1978.tb12624.x.
Pubmed: 213279
Kobayashi H, Inoue A, Mikawa T, Kuwayama H, Hotta Y, Masaki T, Ebashi S: Isolation of cDNA for bovine stomach 155 kDa protein exhibiting myosin light chain kinase activity. J Biochem. 1992 Dec;112(6):786-91. doi: 10.1093/oxfordjournals.jbchem.a123976.
Pubmed: 1284247
Kohama K, Okagaki T, Hayakawa K, Lin Y, Ishikawa R, Shimmen T, Inoue A: A novel regulatory effect of myosin light chain kinase from smooth muscle on the ATP-dependent interaction between actin and myosin. Biochem Biophys Res Commun. 1992 May 15;184(3):1204-11. doi: 10.1016/s0006-291x(05)80010-5.
Pubmed: 1534225
Ye LH, Hayakawa K, Kishi H, Imamura M, Nakamura A, Okagaki T, Takagi T, Iwata A, Tanaka T, Kohama K: The structure and function of the actin-binding domain of myosin light chain kinase of smooth muscle. J Biol Chem. 1997 Dec 19;272(51):32182-9. doi: 10.1074/jbc.272.51.32182.
Pubmed: 9405419
Henry GD, Trayer IP, Brewer S, Levine BA: The widespread distribution of alpha-N-trimethylalanine as the N-terminal amino acid of light chains from vertebrate striated muscle myosins. Eur J Biochem. 1985 Apr 1;148(1):75-82. doi: 10.1111/j.1432-1033.1985.tb08809.x.
Pubmed: 3979397
Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW: Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature. 2002 Aug 15;418(6899):790-3. doi: 10.1038/nature00859.
Pubmed: 12181570
Cao W, Mattagajasingh SN, Xu H, Kim K, Fierlbeck W, Deng J, Lowenstein CJ, Ballermann BJ: TIMAP, a novel CAAX box protein regulated by TGF-beta1 and expressed in endothelial cells. Am J Physiol Cell Physiol. 2002 Jul;283(1):C327-37. doi: 10.1152/ajpcell.00442.2001.
Pubmed: 12055102
Li L, Kozlowski K, Wegner B, Rashid T, Yeung T, Holmes C, Ballermann BJ: Phosphorylation of TIMAP by glycogen synthase kinase-3beta activates its associated protein phosphatase 1. J Biol Chem. 2007 Aug 31;282(35):25960-9. doi: 10.1074/jbc.M703532200. Epub 2007 Jul 3.
Pubmed: 17609201
Poirier C, Gorshkov BA, Zemskova MA, Bogatcheva NV, Verin AD: TIMAP protects endothelial barrier from LPS-induced vascular leakage and is down-regulated by LPS. Respir Physiol Neurobiol. 2011 Dec 15;179(2-3):334-7. doi: 10.1016/j.resp.2011.08.012. Epub 2011 Aug 27.
Pubmed: 21907835
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0063795
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings