Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ion Channels and Their Functional Role in Vascular Endothelium
Rattus norvegicus
Category:
Protein Pathway
Sub-Categories:
Transport/Degradation
Cellular Response
Created: 2018-08-31
Last Updated: 2019-08-16
In endothelial cell, ion channels such as agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry are controlled by intracellular Ca(2+) signals. Some of the channels are expressed by trp gene family. Ca(2+) entry is also controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels, Ca(2+)-activated Cl(-) channel and volume-regulated anion channel (VRAC). VRAC channels can also transport organic osmolytes and amino acid.
References
Ion Channels and Their Functional Role in Vascular Endothelium References
Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR: Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):79-84. doi: 10.1073/pnas.96.1.79.
Pubmed: 9874775
Jaiswal BS, Conti M: Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem. 2001 Aug 24;276(34):31698-708. doi: 10.1074/jbc.M011698200. Epub 2001 Jun 21.
Pubmed: 11423534
Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J: Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 2003 Jan;17(1):82-4. doi: 10.1096/fj.02-0598fje. Epub 2002 Nov 15.
Pubmed: 12475901
Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, Suzuki T: NIDD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem. 2004 Jul 9;279(28):29461-8. doi: 10.1074/jbc.M401471200. Epub 2004 Apr 22.
Pubmed: 15105416
Shi Y, Hutchins W, Ogawa H, Chang CC, Pritchard KA Jr, Zhang C, Khampang P, Lazar J, Jacob HJ, Rafiee P, Baker JE: Increased resistance to myocardial ischemia in the Brown Norway vs. Dahl S rat: role of nitric oxide synthase and Hsp90. J Mol Cell Cardiol. 2005 Apr;38(4):625-35. doi: 10.1016/j.yjmcc.2005.02.005.
Pubmed: 15808839
Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS, Kone BC: Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int. 1994 Sep;46(3):653-65. doi: 10.1038/ki.1994.318.
Pubmed: 7527874
Koglin M, Behrends S: Cloning and functional expression of the rat alpha(2) subunit of soluble guanylyl cyclase. Biochim Biophys Acta. 2000 Dec 1;1494(3):286-9. doi: 10.1016/s0167-4781(00)00211-6.
Pubmed: 11121588
Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F: Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem. 1990 Oct 5;265(28):16841-5.
Pubmed: 1698769
Smigrodzki R, Levitt P: The alpha 1 subunit of soluble guanylyl cyclase is expressed prenatally in the rat brain. Brain Res Dev Brain Res. 1996 Dec 23;97(2):226-34.
Pubmed: 8997507
Yuen PS, Potter LR, Garbers DL: A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry. 1990 Dec 11;29(49):10872-8. doi: 10.1021/bi00501a002.
Pubmed: 1980215
Nakane M, Saheki S, Kuno T, Ishii K, Murad F: Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1139-47. doi: 10.1016/s0006-291x(88)80992-6.
Pubmed: 2905128
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ma X, Beuve A, van den Akker F: Crystal structure of the signaling helix coiled-coil domain of the beta1 subunit of the soluble guanylyl cyclase. BMC Struct Biol. 2010 Jan 27;10:2. doi: 10.1186/1472-6807-10-2.
Pubmed: 20105301
Jow F, Wang K: Cloning and functional expression of rKCNQ2 K(+) channel from rat brain. Brain Res Mol Brain Res. 2000 Sep 15;80(2):269-78. doi: 10.1016/s0169-328x(00)00146-7.
Pubmed: 11038262
Pan Z, Selyanko AA, Hadley JK, Brown DA, Dixon JE, McKinnon D: Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M-currents. J Physiol. 2001 Mar 1;531(Pt 2):347-58. doi: 10.1111/j.1469-7793.2001.0347i.x.
Pubmed: 11230508
Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D: KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science. 1998 Dec 4;282(5395):1890-3. doi: 10.1126/science.282.5395.1890.
Pubmed: 9836639
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Martin PM, Cifuentes-Diaz C, Devaux J, Garcia M, Bureau J, Thomasseau S, Klingler E, Girault JA, Goutebroze L: Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. J Biol Chem. 2017 Feb 10;292(6):2441-2456. doi: 10.1074/jbc.M116.758029. Epub 2016 Dec 15.
Pubmed: 27979964
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0063778
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings