Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Pancreas Function
Mus musculus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2018-09-10
Last Updated: 2019-09-13
The pancreas is crucial in many organisms for properly converting food into usable fuel to be used by cells. It acts as part of the digestive system for a majority of its function as it is connected to the stomach and provides digestive enzymes to the partly digested food brought in by the stomach. The pancreas also serves as an endocrine component, by creating hormones to regulate blood sugar. Insulin, a hormone created by the pancreas, acts to lower blood sugar, which is very important as it allows cells in the body to use sugar without inducing hyperglycaemia.
References
Pancreas Function References
Suzue K, Lodish HF, Thorens B: Sequence of the mouse liver glucose transporter. Nucleic Acids Res. 1989 Dec 11;17(23):10099. doi: 10.1093/nar/17.23.10099.
Pubmed: 2602116
Asano T, Shibasaki Y, Lin JL, Akanuma Y, Takaku F, Oka Y: The nucleotide sequence of cDNA for a mouse liver-type glucose transporter protein. Nucleic Acids Res. 1989 Aug 11;17(15):6386. doi: 10.1093/nar/17.15.6386.
Pubmed: 2771649
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y: A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 1996 Oct 4;271(40):24321-4. doi: 10.1074/jbc.271.40.24321.
Pubmed: 8798681
Chutkow WA, Simon MC, Le Beau MM, Burant CF: Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996 Oct;45(10):1439-45. doi: 10.2337/diab.45.10.1439.
Pubmed: 8826984
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
Pubmed: 21183079
Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA: Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996 Nov 15;87(4):607-17. doi: 10.1016/s0092-8674(00)81381-1.
Pubmed: 8929530
Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL: Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics. 2006 May;5(5):914-22. doi: 10.1074/mcp.T500041-MCP200. Epub 2006 Feb 1.
Pubmed: 16452087
Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R, Mansuy IM: Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics. 2007 Feb;6(2):283-93. doi: 10.1074/mcp.M600046-MCP200. Epub 2006 Nov 17.
Pubmed: 17114649
Murakami M, Miyoshi I, Suzuki T, Sasano H, Iijima T: Structures of the murine genes for the beta1- and beta4-subunits of the voltage-dependent calcium channel. J Mol Neurosci. 2003;21(1):13-21. doi: 10.1385/JMN:21:1:13.
Pubmed: 14500989
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5;7(5):e1000112. doi: 10.1371/journal.pbio.1000112. Epub 2009 May 26.
Pubmed: 19468303
Powers PA, Liu S, Hogan K, Gregg RG: Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967-72.
Pubmed: 1385409
Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, Canti C, Meir A, Page KM, Kusumi K, Perez-Reyes E, Lander ES, Frankel WN, Gardiner RM, Dolphin AC, Rees M: Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci. 2001 Aug 15;21(16):6095-104.
Pubmed: 11487633
Brill J, Klocke R, Paul D, Boison D, Gouder N, Klugbauer N, Hofmann F, Becker CM, Becker K: entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J Biol Chem. 2004 Feb 20;279(8):7322-30. doi: 10.1074/jbc.M308778200. Epub 2003 Dec 2.
Pubmed: 14660671
Donato R, Page KM, Koch D, Nieto-Rostro M, Foucault I, Davies A, Wilkinson T, Rees M, Edwards FA, Dolphin AC: The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J Neurosci. 2006 Nov 29;26(48):12576-86. doi: 10.1523/JNEUROSCI.3080-06.2006.
Pubmed: 17135419
Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM: Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986;23(4):305-12.
Pubmed: 3104603
Sawa T, Ohgaku S, Morioka H, Yano S: Molecular cloning and DNA sequence analysis of preproinsulin genes in the NON mouse, an animal model of human non-obese, non-insulin-dependent diabetes mellitus. J Mol Endocrinol. 1990 Aug;5(1):61-7.
Pubmed: 2397023
Bunzli HF, Glatthaar B, Kunz P, Mulhaupt E, Humbel RE: Amino acid sequence of the two insulins from mouse (Maus musculus). Hoppe Seylers Z Physiol Chem. 1972 Mar;353(3):451-8.
Pubmed: 5063718
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000643
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings