Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Kidney Function
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2018-09-10
Last Updated: 2019-08-16
Kidneys are regulatory organs involved in removing wastes from the blood, hormone production, nutrient reabsorption, and regulating electrolyte concentrations, acid-base balance, extracellular fluid volume, and blood pressure. The early proximal tubule is where glucose, amino acids, sodium, chlorine, phosphate, bicarbonate, and water are reabsorbed. Only water is reabsorbed in the thin descending loop of Henle, while sodium, chlorine and potassium are reabsorbed in the thick ascending loop of Henle. Sodium and chlorine are also reabsorbed in the early distal convoluted tubule. Finally, sodium and water are reabsorbed in the collecting tubules. Blood pressure is regulated by the hormones angiotensin II and aldosterone, which increases sodium chloride reabsorption. This results in an expansion of the extracellular fluid compartment, thus increasing blood pressure.
References
Kidney Function References
Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC: Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713-22.
Pubmed: 8021284
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1993 Feb 25;268(6):3821-4.
Pubmed: 7680033
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1994 Jul 22;269(29):19192.
Pubmed: 8034678
Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ: Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6943-7. doi: 10.1073/pnas.91.15.6943.
Pubmed: 8041726
Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P: Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95-9. doi: 10.1016/0014-5793(93)81336-x.
Pubmed: 8382172
Canessa CM, Horisberger JD, Rossier BC: Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467-70. doi: 10.1038/361467a0.
Pubmed: 8381523
Kreutz R, Struk B, Rubattu S, Hubner N, Szpirer J, Szpirer C, Ganten D, Lindpaintner K: Role of the alpha-, beta-, and gamma-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension. 1997 Jan;29(1 Pt 1):131-6. doi: 10.1161/01.hyp.29.1.131.
Pubmed: 9039092
Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463-7. doi: 10.1038/367463a0.
Pubmed: 8107805
Shimkets RA, Lifton R, Canessa CM: In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3301-5. doi: 10.1073/pnas.95.6.3301.
Pubmed: 9501257
Lingueglia E, Renard S, Waldmann R, Voilley N, Champigny G, Plass H, Lazdunski M, Barbry P: Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem. 1994 May 13;269(19):13736-9.
Pubmed: 8188647
Bjoras M, Gjesdal O, Erickson JD, Torp R, Levy LM, Ottersen OP, Degree M, Storm-Mathisen J, Seeberg E, Danbolt NC: Cloning and expression of a neuronal rat brain glutamate transporter. Brain Res Mol Brain Res. 1996 Feb;36(1):163-8. doi: 10.1016/0169-328x(95)00279-2.
Pubmed: 9011753
Kanai Y, Bhide PG, DiFiglia M, Hediger MA: Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport. 1995 Nov 27;6(17):2357-62. doi: 10.1097/00001756-199511270-00020.
Pubmed: 8747153
Kiryu S, Yao GL, Morita N, Kato H, Kiyama H: Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. J Neurosci. 1995 Dec;15(12):7872-8.
Pubmed: 8613726
Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y: Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745-51. doi: 10.1074/jbc.274.28.19745.
Pubmed: 10391916
Fraga S, Pinho MJ, Soares-da-Silva P: Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids. 2005 Nov;29(3):229-33. doi: 10.1007/s00726-005-0221-x. Epub 2005 Jul 20.
Pubmed: 16027961
Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K: L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2522-30. doi: 10.1167/iovs.04-1175.
Pubmed: 15980244
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000483
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings