Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metachromatic Leukodystrophy (MLD)
Mus musculus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Metachromatic leukodystrophy also known as MLD, is a rare inborn error of metabolism (IEM) which arises from a defective gene called ARSA. The ARSA gene which codes for arylsulfatase. An improperly function arylsulfatase enzyme can lead to the build up of 3-O-sulfogalactosylceramide in urine, neural and non neural tissues like kidney and gallbladder.
MLD like many conditions comes in a slew of different shapes and sizes. The most common these is known as the late infantile form. This form affects children after their first year of age and manifests itself with children having difficulty walking. Of the many other symptoms which present themselves some of them include developmental delays, muscle weakness, rigidity and wasting, convulsions, and dementia, just to name a few. In extreme cases a comatose state may arise in affected children and without treatment, the majority of those affected by late infantile MLD will perish by/or before the age of 5. Another form of MLD is juvenile MLD. Characterized by an age of onset between 3 and 10. It is typically discovered when affected children start to show detiorating school performance, and mental faculties, as well as with the onset of dementia. Progression is slower though very much the same as in the former form of MLD discussed above. Most individuals die 10 to 15 years after the first symptoms manifest. The final form of MLD is adult onset MLD. Defined as occurring after the age of 16 and characterized by progressive dementia or by some psychiatric disorder. The progression of this form is the slowest of the three, and affected individuals may survive a decade or more.
References
Metachromatic Leukodystrophy (MLD) References
Gieselmann V, Krageloh-Mann I: Metachromatic leukodystrophy--an update. Neuropediatrics. 2010 Feb;41(1):1-6. doi: 10.1055/s-0030-1253412. Epub 2010 Jun 22.
Pubmed: 20571983
Sphingolipid Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Vance, D.E., and Vance, J.E. Biochemistry of lipids, lipoproteins, and membranes (4th ed.) (2002) Amsterdam; Boston: Elsevier.
Egawa K, Yoshiwara M, Shibanuma M, Nose K: Isolation of a novel ras-recision gene that is induced by hydrogen peroxide from a mouse osteoblastic cell line, MC3T3-E1. FEBS Lett. 1995 Sep 18;372(1):74-7. doi: 10.1016/0014-5793(95)00957-b.
Pubmed: 7556647
Kai M, Wada I, Imai S, Sakane F, Kanoh H: Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem. 1996 Aug 2;271(31):18931-8. doi: 10.1074/jbc.271.31.18931.
Pubmed: 8702556
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
O'Neill RR, Tokoro T, Kozak CA, Brady RO: Comparison of the chromosomal localization of murine and human glucocerebrosidase genes and of the deduced amino acid sequences. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5049-53. doi: 10.1073/pnas.86.13.5049.
Pubmed: 2740343
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ohshima T, Murray GJ, Nagle JW, Quirk JM, Kraus MH, Barton NW, Brady RO, Kulkarni AB: Structural organization and expression of the mouse gene encoding alpha-galactosidase A. Gene. 1995 Dec 12;166(2):277-80. doi: 10.1016/0378-1119(95)00592-7.
Pubmed: 8543175
Oeltjen JC, Liu X, Lu J, Allen RC, Muzny D, Belmont JW, Gibbs RA: Sixty-nine kilobases of contiguous human genomic sequence containing the alpha-galactosidase A and Bruton's tyrosine kinase loci. Mamm Genome. 1995 May;6(5):334-8.
Pubmed: 7626884
Gotlib RW, Bishop DF, Wang AM, Zeidner KM, Ioannou YA, Adler DA, Disteche CM, Desnick RJ: The entire genomic sequence and cDNA expression of mouse alpha-galactosidase A. Biochem Mol Med. 1996 Apr;57(2):139-48.
Pubmed: 8733892
Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T: Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J Biol Chem. 2000 Mar 17;275(11):8007-15. doi: 10.1074/jbc.275.11.8007.
Pubmed: 10713120
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
Pubmed: 21183079
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000347
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings