Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Isovaleric Acidemia
Mus musculus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Isovaleric academia, also called IVA, is an extremely rare inherited inborn error of metabolism (IEM) of leucine metabolism. It is an autosomal recessive disorder that is caused by a deficiency of isovaleryl-CoA dehydrogenase. It is characterized by a build-up of isovaleric acid in the blood and other biofluids. High levels of isovaleric acid lead to a rancid cheese odour. There are two major phenotypes of IVA: (1) an acute form and (2) a late-onset form. The acute form manifests as catastrophic disease in the newborn period and infants become extremely sick in the first week of life. There is usually a history of poor feeding, vomiting, lethargy, and seizures. In the acute form, metabolic acidosis is present, usually with an elevated anion gap and ketosis. There may be secondary hyperammonemia, thrombocytopenia, neutropenia, and sometimes anemia. The late-onset form is characterized by chronic, intermittent episodes of metabolic decompensation. The degree of isovaleryl-CoA dehydrogenase deficiency and the mutations differ between the two extreme presentations. The acute form of IVA is reasonably treatable. Administration of glycine has been shown to reduce isovaleric acidemia in neonates. Glycine is readily conjugated with isovaleric acid, which leads to urinary excretion of the conjugate. A diet that is also restricted in leucine consumption is also useful in treating the disorder.
References
Isovaleric Acidemia References
Vockley J, Ensenauer R: Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006 May 15;142C(2):95-103. doi: 10.1002/ajmg.c.30089.
Pubmed: 16602101
Tanaka K, Ikeda Y, Matsubara Y, Hyman DB: Molecular basis of isovaleric acidemia and medium-chain acyl-CoA dehydrogenase deficiency. Enzyme. 1987;38(1-4):91-107.
Pubmed: 3326738
Valine, Leucine, and Isoleucine Degradation References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ballif BA, Carey GR, Sunyaev SR, Gygi SP: Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res. 2008 Jan;7(1):311-8. doi: 10.1021/pr0701254. Epub 2007 Nov 23.
Pubmed: 18034455
Fitzgerald J, Hutchison WM, Dahl HH: Isolation and characterisation of the mouse pyruvate dehydrogenase E1 alpha genes. Biochim Biophys Acta. 1992 May 7;1131(1):83-90. doi: 10.1016/0167-4781(92)90102-6.
Pubmed: 1581363
Tamura T, McMicken HW, Smith CV, Hansen TN: Gene structure for mouse glutathione reductase, including a putative mitochondrial targeting signal. Biochem Biophys Res Commun. 1997 Aug 18;237(2):419-22. doi: 10.1006/bbrc.1997.7153.
Pubmed: 9268726
Tutic M, Lu XA, Schirmer RH, Werner D: Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem. 1990 Mar 30;188(3):523-8. doi: 10.1111/j.1432-1033.1990.tb15431.x.
Pubmed: 2185014
Wang S, Nadeau JH, Duncan A, Robert MF, Fontaine G, Schappert K, Johnson KR, Zietkiewicz E, Hruz P, Miziorko H, et al.: 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL): cloning and characterization of a mouse liver HL cDNA and subchromosomal mapping of the human and mouse HL genes. Mamm Genome. 1993;4(7):382-7.
Pubmed: 8102917
Wang SP, Robert MF, Gibson KM, Wanders RJ, Mitchell GA: 3-Hydroxy-3-methylglutaryl CoA lyase (HL): mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients. Genomics. 1996 Apr 1;33(1):99-104. doi: 10.1006/geno.1996.0164.
Pubmed: 8617516
Schuldiner O, Eden A, Ben-Yosef T, Yanuka O, Simchen G, Benvenisty N: ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7143-8. doi: 10.1073/pnas.93.14.7143.
Pubmed: 8692959
Niwa O, Kumazaki T, Tsukiyama T, Soma G, Miyajima N, Yokoro K: A cDNA clone overexpressed and amplified in a mouse teratocarcinoma line. Nucleic Acids Res. 1990 Nov 25;18(22):6709. doi: 10.1093/nar/18.22.6709.
Pubmed: 2251142
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000524
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings