Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Krabbe Disease
Mus musculus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Krabbe disease, also called globoid cell leukodystrophy, is an extremely rare inherited inborn error of metabolism (IEM). It is a degenerative disorder that affects the nervous system. It has an estimated prevalence of 1/100,000 in the Northern European population and a worldwide incidence of 1/100,000-1/250,000 live births. Krabbe disease is an autosomal recessive disorder that is caused by a deficiency of an enzyme called galactosylceramidase. Galactosylceramidase is a lysosomal protein that hydrolyzes the galactose ester bonds of ceramides and ceramide derivatives including galactocerebroside, galactosylsphingosine (psychosine), lactosylceramide, and monogalactosyldiglyceride. More specifically, galactosylceramidase is an enzyme that is involved in the catabolism (via the removal of galactose) of galactosylceramide, a major lipid in myelin, kidney, and epithelial cells of the small intestine and colon. Defects in galactosylceramidase lead to the accumulation of cytotoxic psychosine, which ultimately leads to apoptosis of oligodendrocytes and demyelination. As a result, this enzyme deficiency impairs the growth and maintenance of myelin, the protective sheath around nerve cell axons that ensures that electrical impulses are rapidly transmitted. Krabbe disease is part of a group of disorders known as leukodystrophies, which result from the loss of myelin (demyelination). Krabbe disease is also characterized by the abnormal presence of globoid cells, which are globe-shaped cells that often have multiple nuclei. There are three different phenotypes for Krabbe disease: infantile, juvenile, and late-onset. Neurodegeneration and early death (at age 2-3) occur in most infantile cases. In juvenile patients, the disease is often fatal 2-7 years after the symptoms begin. Adult-onset patients can survive many years after symptoms first manifest. The symptoms of infantile Krabbe disease usually begin during the first year of life. Typically, the initial signs and symptoms include feeding difficulties, episodes of fever without any sign of infection, irritability, stiff posture, muscle weakness, and slowed mental and physical development. Muscles continue to weaken as the disease progresses which decreases the infant's ability to move, chew, swallow, and breathe. It is also common for affected infants to experience vision loss and seizures. Treatment is limited to hematopoietic stem cell transplantation in pre-symptomatic infantile patients and mildly affected late-onset patients. Stem cell transplants have been shown to slow the progression of the disease.
References
Krabbe Disease References
Pastores GM: Krabbe disease: an overview. Int J Clin Pharmacol Ther. 2009;47 Suppl 1:S75-81.
Pubmed: 20040316
Sphingolipid Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Vance, D.E., and Vance, J.E. Biochemistry of lipids, lipoproteins, and membranes (4th ed.) (2002) Amsterdam; Boston: Elsevier.
Egawa K, Yoshiwara M, Shibanuma M, Nose K: Isolation of a novel ras-recision gene that is induced by hydrogen peroxide from a mouse osteoblastic cell line, MC3T3-E1. FEBS Lett. 1995 Sep 18;372(1):74-7. doi: 10.1016/0014-5793(95)00957-b.
Pubmed: 7556647
Kai M, Wada I, Imai S, Sakane F, Kanoh H: Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem. 1996 Aug 2;271(31):18931-8. doi: 10.1074/jbc.271.31.18931.
Pubmed: 8702556
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
O'Neill RR, Tokoro T, Kozak CA, Brady RO: Comparison of the chromosomal localization of murine and human glucocerebrosidase genes and of the deduced amino acid sequences. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5049-53. doi: 10.1073/pnas.86.13.5049.
Pubmed: 2740343
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ohshima T, Murray GJ, Nagle JW, Quirk JM, Kraus MH, Barton NW, Brady RO, Kulkarni AB: Structural organization and expression of the mouse gene encoding alpha-galactosidase A. Gene. 1995 Dec 12;166(2):277-80. doi: 10.1016/0378-1119(95)00592-7.
Pubmed: 8543175
Oeltjen JC, Liu X, Lu J, Allen RC, Muzny D, Belmont JW, Gibbs RA: Sixty-nine kilobases of contiguous human genomic sequence containing the alpha-galactosidase A and Bruton's tyrosine kinase loci. Mamm Genome. 1995 May;6(5):334-8.
Pubmed: 7626884
Gotlib RW, Bishop DF, Wang AM, Zeidner KM, Ioannou YA, Adler DA, Disteche CM, Desnick RJ: The entire genomic sequence and cDNA expression of mouse alpha-galactosidase A. Biochem Mol Med. 1996 Apr;57(2):139-48.
Pubmed: 8733892
Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T: Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J Biol Chem. 2000 Mar 17;275(11):8007-15. doi: 10.1074/jbc.275.11.8007.
Pubmed: 10713120
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
Pubmed: 21183079
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000526
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings