Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Globoid Cell Leukodystrophy
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Globoid Cell Leukodistrophy (GLD), also called Krabbe disease and galactosylceramide lipidosis, is an extremely rare inherited inborn error of metabolism (IEM). It is a degenerative disorder that affects the nervous system. It has an estimated prevalence of 1/100,000 in the Northern European population and a worldwide incidence of 1/100,000-1/250,000 live births. GLD is an autosomal recessive disorder that is caused by a deficiency of an enzyme called galactosylceramidase. Galactosylceramidase is a lysosomal protein that hydrolyzes the galactose ester bonds of ceramides and ceramide derivatives including galactocerebroside, galactosylsphingosine (psychosine), lactosylceramide, and monogalactosyldiglyceride. More specifically, galactosylceramidase is an enzyme that is involved in the catabolism (via the removal of galactose) of galactosylceramide, a major lipid in myelin, kidney, and epithelial cells of the small intestine and colon. Defects in galactosylceramidase lead to the accumulation of cytotoxic psychosine, which ultimately leads to apoptosis of oligodendrocytes and demyelination. As a result, this enzyme deficiency impairs the growth and maintenance of myelin, the protective sheath around nerve cell axons that ensures that electrical impulses are rapidly transmitted. GLD is part of a group of disorders known as leukodystrophies, which result from the loss of myelin (demyelination). GLD is also characterized by the abnormal presence of globoid cells, which are globe-shaped cells that often have multiple nuclei. There are three different phenotypes for GLD: infantile, juvenile, and late-onset. Neurodegeneration and early death (at age 2-3) occur in most infantile cases. In juvenile patients, the disease is often fatal 2-7 years after the symptoms begin. Adult-onset patients can survive many years after symptoms first manifest. The symptoms of infantile GLD usually begin during the first year of life. Typically, the initial signs and symptoms include feeding difficulties, episodes of fever without any sign of infection, irritability, stiff posture, muscle weakness, and slowed mental and physical development. Muscles continue to weaken as the disease progresses which decreases the infant's ability to move, chew, swallow, and breathe. It is also common for affected infants to experience vision loss and seizures. Treatment is limited to hematopoietic stem cell transplantation in pre-symptomatic infantile patients and mildly affected late-onset patients. Stem cell transplants have been shown to slow the progression of the disease.
References
Globoid Cell Leukodystrophy References
Wenger DA, Rafi MA, Luzi P: Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat. 1997;10(4):268-79. doi: 10.1002/(SICI)1098-1004(1997)10:4<268::AID-HUMU2>3.0.CO;2-D.
Pubmed: 9338580
Li Y, Sands MS: Experimental therapies in the murine model of globoid cell leukodystrophy. Pediatr Neurol. 2014 Nov;51(5):600-6. doi: 10.1016/j.pediatrneurol.2014.08.003. Epub 2014 Aug 8.
Pubmed: 25240259
Sphingolipid Metabolism References
Imamura T, Ohgane J, Ito S, Ogawa T, Hattori N, Tanaka S, Shiota K: CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons. Genomics. 2001 Aug;76(1-3):117-25. doi: 10.1006/geno.2001.6607.
Pubmed: 11560121
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, Milstien S, Spiegel S: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem. 2005 Nov 4;280(44):37118-29. doi: 10.1074/jbc.M502207200. Epub 2005 Aug 23.
Pubmed: 16118219
Jasinska R, Zhang QX, Pilquil C, Singh I, Xu J, Dewald J, Dillon DA, Berthiaume LG, Carman GM, Waggoner DW, Brindley DN: Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J. 1999 Jun 15;340 ( Pt 3):677-86.
Pubmed: 10359651
Nanjundan M, Possmayer F: Molecular cloning and expression of pulmonary lipid phosphate phosphohydrolases. Am J Physiol Lung Cell Mol Physiol. 2001 Dec;281(6):L1484-93. doi: 10.1152/ajplung.2001.281.6.L1484.
Pubmed: 11704545
Waggoner DW, Gomez-Munoz A, Dewald J, Brindley DN: Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem. 1996 Jul 12;271(28):16506-9. doi: 10.1074/jbc.271.28.16506.
Pubmed: 8663293
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000348
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings