Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glucose Transporter Defect (SGLT2)
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-08-16
SGLT2 is a sodium/glucose co-transporter that exists almost exclusively in kidney tissue. It is responsible for approximately 90% of the kidney's reabsorption of glucose, and can be found in the S1 segment of the proximal convoluted tubule of the nephron. A defect in the SLC5A2 gene that codes for SGLT2 results in glucosuria, due to the inability of most of the glucose to be reabsorbed by the kidney. There are some drugs that inhibit SGLT2 and are used to decrease blood sugar in patients with type 2 diabetes mellitus.
References
Glucose Transporter Defect (SGLT2) References
Santer R, Calado J: Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010 Jan;5(1):133-41. doi: 10.2215/CJN.04010609. Epub 2009 Nov 5.
Pubmed: 19965550
Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T: Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F156-67. doi: 10.1152/ajprenal.00409.2012. Epub 2012 Nov 14.
Pubmed: 23152292
Kidney Function References
Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC: Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713-22.
Pubmed: 8021284
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1993 Feb 25;268(6):3821-4.
Pubmed: 7680033
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1994 Jul 22;269(29):19192.
Pubmed: 8034678
Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ: Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6943-7. doi: 10.1073/pnas.91.15.6943.
Pubmed: 8041726
Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P: Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95-9. doi: 10.1016/0014-5793(93)81336-x.
Pubmed: 8382172
Canessa CM, Horisberger JD, Rossier BC: Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467-70. doi: 10.1038/361467a0.
Pubmed: 8381523
Kreutz R, Struk B, Rubattu S, Hubner N, Szpirer J, Szpirer C, Ganten D, Lindpaintner K: Role of the alpha-, beta-, and gamma-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension. 1997 Jan;29(1 Pt 1):131-6. doi: 10.1161/01.hyp.29.1.131.
Pubmed: 9039092
Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463-7. doi: 10.1038/367463a0.
Pubmed: 8107805
Shimkets RA, Lifton R, Canessa CM: In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3301-5. doi: 10.1073/pnas.95.6.3301.
Pubmed: 9501257
Lingueglia E, Renard S, Waldmann R, Voilley N, Champigny G, Plass H, Lazdunski M, Barbry P: Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem. 1994 May 13;269(19):13736-9.
Pubmed: 8188647
Bjoras M, Gjesdal O, Erickson JD, Torp R, Levy LM, Ottersen OP, Degree M, Storm-Mathisen J, Seeberg E, Danbolt NC: Cloning and expression of a neuronal rat brain glutamate transporter. Brain Res Mol Brain Res. 1996 Feb;36(1):163-8. doi: 10.1016/0169-328x(95)00279-2.
Pubmed: 9011753
Kanai Y, Bhide PG, DiFiglia M, Hediger MA: Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport. 1995 Nov 27;6(17):2357-62. doi: 10.1097/00001756-199511270-00020.
Pubmed: 8747153
Kiryu S, Yao GL, Morita N, Kato H, Kiyama H: Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. J Neurosci. 1995 Dec;15(12):7872-8.
Pubmed: 8613726
Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y: Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745-51. doi: 10.1074/jbc.274.28.19745.
Pubmed: 10391916
Fraga S, Pinho MJ, Soares-da-Silva P: Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids. 2005 Nov;29(3):229-33. doi: 10.1007/s00726-005-0221-x. Epub 2005 Jul 20.
Pubmed: 16027961
Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K: L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2522-30. doi: 10.1167/iovs.04-1175.
Pubmed: 15980244
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000184
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings