
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Hartnup Disorder
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-08-16
Hartunup Disorder (HND, Hartnup Disease) is an autosomal recessive disease caused by a mutation in the SLC6A19 which codes for sodium-dependent neutral amino acid transporter B(0). A deficiency in this enzyme results in accumulation of L-alanine, L-asparagine, L-histidine, indoleacetic acid, L-isoleucine, L-leucine, L-phenylalanine, L-serine, L-threonine, L-tryptophan, L-valine, and L-tyrosine in urine. Symptoms include pellagra, psychosis, ataxia, and mental retardation. Treatment includes nicotinamide.
References
Hartnup Disorder References
Tahmoush AJ, Alpers DH, Feigin RD, Armbrustmacher V, Prensky AL: Hartnup disease. Clinical, pathological, and biochemical observations. Arch Neurol. 1976 Dec;33(12):797-807.
Pubmed: 999542
Kidney Function References
Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC: Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713-22.
Pubmed: 8021284
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1993 Feb 25;268(6):3821-4.
Pubmed: 7680033
Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F: Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem. 1994 Jul 22;269(29):19192.
Pubmed: 8034678
Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ: Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6943-7. doi: 10.1073/pnas.91.15.6943.
Pubmed: 8041726
Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P: Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95-9. doi: 10.1016/0014-5793(93)81336-x.
Pubmed: 8382172
Canessa CM, Horisberger JD, Rossier BC: Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467-70. doi: 10.1038/361467a0.
Pubmed: 8381523
Kreutz R, Struk B, Rubattu S, Hubner N, Szpirer J, Szpirer C, Ganten D, Lindpaintner K: Role of the alpha-, beta-, and gamma-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension. 1997 Jan;29(1 Pt 1):131-6. doi: 10.1161/01.hyp.29.1.131.
Pubmed: 9039092
Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463-7. doi: 10.1038/367463a0.
Pubmed: 8107805
Shimkets RA, Lifton R, Canessa CM: In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3301-5. doi: 10.1073/pnas.95.6.3301.
Pubmed: 9501257
Lingueglia E, Renard S, Waldmann R, Voilley N, Champigny G, Plass H, Lazdunski M, Barbry P: Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem. 1994 May 13;269(19):13736-9.
Pubmed: 8188647
Bjoras M, Gjesdal O, Erickson JD, Torp R, Levy LM, Ottersen OP, Degree M, Storm-Mathisen J, Seeberg E, Danbolt NC: Cloning and expression of a neuronal rat brain glutamate transporter. Brain Res Mol Brain Res. 1996 Feb;36(1):163-8. doi: 10.1016/0169-328x(95)00279-2.
Pubmed: 9011753
Kanai Y, Bhide PG, DiFiglia M, Hediger MA: Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport. 1995 Nov 27;6(17):2357-62. doi: 10.1097/00001756-199511270-00020.
Pubmed: 8747153
Kiryu S, Yao GL, Morita N, Kato H, Kiyama H: Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. J Neurosci. 1995 Dec;15(12):7872-8.
Pubmed: 8613726
Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y: Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745-51. doi: 10.1074/jbc.274.28.19745.
Pubmed: 10391916
Fraga S, Pinho MJ, Soares-da-Silva P: Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids. 2005 Nov;29(3):229-33. doi: 10.1007/s00726-005-0221-x. Epub 2005 Jul 20.
Pubmed: 16027961
Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K: L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2522-30. doi: 10.1167/iovs.04-1175.
Pubmed: 15980244
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000189
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings