Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Guanidinoacetate methyltransferase deficiency, also called GAMT deficiency, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of creatine metabolism caused by a defective guanidinoacetate methyltransferase (GAMT). GAMT catalyzes the conversion of guanidinoacetate into creatine which is used by creatine kinase to resynthesize adenosine triphosphate (ATP) from adenosine diphosphate (ADP). This disease is characterized by a large accumulation of guanidinoacetate and a decrease in creatine in the blood and urine. Symptoms of the disease include developmental delay, hypotonia, and seizures. Treatment with creatine supplementation is very effective. It is estimated that GAMT deficiency affects 1 in 250 000 individuals.
References
Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency References
Schulze A, Hess T, Wevers R, Mayatepek E, Bachert P, Marescau B, Knopp MV, De Deyn PP, Bremer HJ, Rating D: Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr. 1997 Oct;131(4):626-31.
Pubmed: 9386672
Arginine and Proline Metabolism References
Surh LC, Morris SM, O'Brien WE, Beaudet AL: Nucleotide sequence of the cDNA encoding the rat argininosuccinate synthetase. Nucleic Acids Res. 1988 Oct 11;16(19):9352. doi: 10.1093/nar/16.19.9352.
Pubmed: 3174461
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Guerreiro JR, Lameu C, Oliveira EF, Klitzke CF, Melo RL, Linares E, Augusto O, Fox JW, Lebrun I, Serrano SM, Camargo AC: Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem. 2009 Jul 24;284(30):20022-33. doi: 10.1074/jbc.M109.021089. Epub 2009 Jun 2.
Pubmed: 19491403
Amaya Y, Matsubasa T, Takiguchi M, Kobayashi K, Saheki T, Kawamoto S, Mori M: Amino acid sequence of rat argininosuccinate lyase deduced from cDNA. J Biochem. 1988 Jan;103(1):177-81. doi: 10.1093/oxfordjournals.jbchem.a122227.
Pubmed: 2834354
Matsubasa T, Takiguchi M, Amaya Y, Matsuda I, Mori M: Structure of the rat argininosuccinate lyase gene: close similarity to chicken delta-crystallin genes. Proc Natl Acad Sci U S A. 1989 Jan;86(2):592-6. doi: 10.1073/pnas.86.2.592.
Pubmed: 2789519
Kawamoto S, Kaneko T, Mizuki N, Ohsuga A, Fukushima J, Amaya Y, Mori M, Okuda K: Molecular cloning and nucleotide sequence of rat brain argininosuccinate lyase cDNA with an extremely long 5'-untranslated sequence: evidence for the identity of the brain and liver enzymes. Brain Res Mol Brain Res. 1989 May;5(3):235-41. doi: 10.1016/0169-328x(89)90040-5.
Pubmed: 2725197
Nyunoya H, Broglie KE, Widgren EE, Lusty CJ: Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346-56.
Pubmed: 2991241
Lagace M, Howell BW, Burak R, Lusty CJ, Shore GC: Rat carbamyl-phosphate synthetase I gene. Promoter sequence and tissue-specific transcriptional regulation in vitro. J Biol Chem. 1987 Aug 5;262(22):10415-8.
Pubmed: 3038878
Pekkala S, Martinez AI, Barcelona B, Gallego J, Bendala E, Yefimenko I, Rubio V, Cervera J: Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase. Biochem J. 2009 Nov 11;424(2):211-20. doi: 10.1042/BJ20090888.
Pubmed: 19754428
Amuro N, Ooki K, Ito A, Goto Y, Okazaki T: Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acids Res. 1989 Mar 25;17(6):2356. doi: 10.1093/nar/17.6.2356.
Pubmed: 2704625
Das AT, Moerer P, Charles R, Moorman AF, Lamers WH: Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acids Res. 1989 Mar 25;17(6):2355. doi: 10.1093/nar/17.6.2355.
Pubmed: 2704624
Mueckler MM, Pitot HC: Sequence of the precursor to rat ornithine aminotransferase deduced from a cDNA clone. J Biol Chem. 1985 Oct 25;260(24):12993-7.
Pubmed: 3840476
Mitchell GA, Looney JE, Brody LC, Steel G, Suchanek M, Engelhardt JF, Willard HF, Valle D: Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988 Oct 5;263(28):14288-95.
Pubmed: 3170546
Shull JD, Pennington KL, George SM, Kilibarda KA: The ornithine aminotransferase-encoding gene family of rat: cloning, characterization, and evolutionary relationships between a single expressed gene and three pseudogenes. Gene. 1991 Aug 15;104(2):203-9. doi: 10.1016/0378-1119(91)90251-6.
Pubmed: 1916291
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Kukkola L, Hieta R, Kivirikko KI, Myllyharju J: Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J Biol Chem. 2003 Nov 28;278(48):47685-93. doi: 10.1074/jbc.M306806200. Epub 2003 Sep 18.
Pubmed: 14500733
Guthmiller P, Van Pilsum JF, Boen JR, McGuire DM: Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J Biol Chem. 1994 Jul 1;269(26):17556-60.
Pubmed: 8021264
Gross MD, Simon AM, Jenny RJ, Gray ED, McGuire DM, Van Pilsum JF: Multiple forms of rat kidney L-arginine:glycine amidinotransferase. J Nutr. 1988 Nov;118(11):1403-9. doi: 10.1093/jn/118.11.1403.
Pubmed: 3057136
Ogawa H, Date T, Gomi T, Konishi K, Pitot HC, Cantoni GL, Fujioka M: Molecular cloning, sequence analysis, and expression in Escherichia coli of the cDNA for guanidinoacetate methyltransferase from rat liver. Proc Natl Acad Sci U S A. 1988 Feb;85(3):694-8. doi: 10.1073/pnas.85.3.694.
Pubmed: 3277179
Ogawa H, Fujioka M: Nucleotide sequence of the rat guanidinoacetate methyltransferase gene. Nucleic Acids Res. 1988 Sep 12;16(17):8715-6. doi: 10.1093/nar/16.17.8715.
Pubmed: 3419933
Fujioka M, Takata Y, Gomi T: Recombinant rat guanidinoacetate methyltransferase: structure and function of the NH2-terminal region as deduced by limited proteolysis. Arch Biochem Biophys. 1991 Feb 15;285(1):181-6. doi: 10.1016/0003-9861(91)90347-l.
Pubmed: 1990977
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000504
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings