Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glucose-6-phosphate Dehydrogenase Deficiency
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Glucose-6-phosphate dehydrogenase deficiency, also called G6PDD, is a very common inherited inborn error of metabolism (IEM) that is characterized by a defect in the glucose-6-phosphate dehydrogenase gene. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway. G6PD converts glucose-6-phosphate into 6-phosphoglucono-delta-lactone. This reaction supplies reducing energy to cells by maintaining high levels of NADPH inside cells, especially red blood cells. NADPH helps maintain the supply of reduced glutathione that is used to eliminate free radicals that cause oxidative damage in red blood cells. G6PDD is an X-linked genetic disorder that primarily affects males and predisposes affected individuals to red blood cell breakdown, which is called hemolysis. About 400 million people (1 in 20) have G6PDD globally and it is particularly common in certain parts of Africa, Asia, the Mediterranean, and the Middle East. Carriers of the G6PDD allele may be partially protected against malaria, which explains the higher incidence of this genetic defect in people coming from countries that have or historically had malaria. While the vast majority of affected individuals are male, females can be clinically affected due to unfavourable lyonization, where random inactivation of an X-chromosome in certain cells creates a population of G6PD-deficient red blood cells coexisting with unaffected red blood cells. As noted above, G6PDD mainly affects the redox capacity of red blood cells, which carry oxygen from the lungs to tissues throughout the body. The most common medical problem associated with G6PDD is hemolytic anemia, which occurs when red blood cells are destroyed faster than the body can replace them. This type of anemia leads to paleness, yellowing of the skin and whites of the eyes (jaundice), dark urine, shortness of breath, fatigue, and a rapid heart rate. In individuals with G6PDD, hemolytic anemia is most often triggered by bacterial or viral infections or by certain drugs (such as some antibiotics, aspirin, quinine and other antimalarials derived from quinine). Hemolytic anemia can also occur after inhaling fava plant pollen or consuming fava beans (a reaction called favism). In newborns, G6PDD is also a significant cause of mild to severe jaundice. Many people with G6PDD, however, are asymptomatic.
References
Glucose-6-phosphate Dehydrogenase Deficiency References
Luzzatto L, Nannelli C, Notaro R: Glucose-6-Phosphate Dehydrogenase Deficiency. Hematol Oncol Clin North Am. 2016 Apr;30(2):373-93. doi: 10.1016/j.hoc.2015.11.006.
Pubmed: 27040960
Watson-Williams EJ: Clinical aspects of glucose-6 phosphate dehydrogenase deficiency. Scott Med J. 1966 Aug;11(8):290-4. doi: 10.1177/003693306601100804.
Pubmed: 5338874
Rochford R, Ohrt C, Baresel PC, Campo B, Sampath A, Magill AJ, Tekwani BL, Walker LA: Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17486-91. doi: 10.1073/pnas.1310402110. Epub 2013 Oct 7.
Pubmed: 24101478
Pentose Phosphate Pathway References
Rivera AA, Elton TS, Dey NB, Bounelis P, Marchase RB: Isolation and expression of a rat liver cDNA encoding phosphoglucomutase. Gene. 1993 Nov 15;133(2):261-6. doi: 10.1016/0378-1119(93)90649-n.
Pubmed: 8224913
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Taira M, Ishijima S, Kita K, Yamada K, Iizasa T, Tatibana M: Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J Biol Chem. 1987 Nov 5;262(31):14867-70.
Pubmed: 2822704
Ishijima S, Taira M, Tatibana M: Complete cDNA sequence of rat phosphoribosylpyrophosphate synthetase subunit I (PRS I). Nucleic Acids Res. 1989 Nov 11;17(21):8860. doi: 10.1093/nar/17.21.8860.
Pubmed: 2555779
Shimada H, Taira M, Yamada K, Iizasa T, Tatibana M: Structure of the rat PRPS1 gene encoding phosphoribosylpyrophosphate synthetase subunit I. J Biol Chem. 1990 Mar 5;265(7):3956-60.
Pubmed: 2154494
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Mukai T, Joh K, Arai Y, Yatsuki H, Hori K: Tissue-specific expression of rat aldolase A mRNAs. Three molecular species differing only in the 5'-terminal sequences. J Biol Chem. 1986 Mar 5;261(7):3347-54.
Pubmed: 3753977
Joh K, Mukai T, Yatsuki H, Hori K: Rat aldolase A messenger RNA: the nucleotide sequence and multiple mRNA species with different 5'-terminal regions. Gene. 1985;39(1):17-24. doi: 10.1016/0378-1119(85)90102-7.
Pubmed: 2416636
Joh K, Arai Y, Mukai T, Hori K: Expression of three mRNA species from a single rat aldolase A gene, differing in their 5' non-coding regions. J Mol Biol. 1986 Aug 5;190(3):401-10. doi: 10.1016/0022-2836(86)90011-2.
Pubmed: 3783705
el-Maghrabi MR, Pilkis J, Marker AJ, Colosia AD, D'Angelo G, Fraser BA, Pilkis SJ: cDNA sequence of rat liver fructose-1,6-bisphosphatase and evidence for down-regulation of its mRNA by insulin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8430-4. doi: 10.1073/pnas.85.22.8430.
Pubmed: 2847161
el-Maghrabi MR, Lange AJ, Kummel L, Pilkis SJ: The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression. J Biol Chem. 1991 Feb 5;266(4):2115-20.
Pubmed: 1846613
Bertolotti R, Armbruster-Hilbert L, Okayama H: Liver fructose-1,6-bisphosphatase cDNA: trans-complementation of fission yeast and characterization of two human transcripts. Differentiation. 1995 Jul;59(1):51-60. doi: 10.1046/j.1432-0436.1995.5910051.x.
Pubmed: 7589895
Hotta K, Nakajima H, Yamasaki T, Hamaguchi T, Kuwajima M, Noguchi T, Tanaka T, Kono N, Tarui S: Rat-liver-type phosphofructokinase mRNA. Structure, tissue distribution and regulation. Eur J Biochem. 1991 Dec 5;202(2):293-8. doi: 10.1111/j.1432-1033.1991.tb16375.x.
Pubmed: 1836995
Maurya DK, Sundaram CS, Bhargava P: Proteome profile of the mature rat olfactory bulb. Proteomics. 2009 May;9(9):2593-9. doi: 10.1002/pmic.200800664.
Pubmed: 19343716
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000518
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings