Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glycogenosis, Type VII. Tarui Disease
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Glycogen storage disease, Type VII, also called GSD VII and Tarui Disease, is an inborn error of metabolism (IEM) and metabolic disorder caused by a defective 6-phosphofructokinase. 6-phosphofructokinase catalyzes the conversion of fructose 6-phosphate into fructose 1,6-bisphosphate which is the substrate of fructose-bisphosphate aldolase A. This disorder is characterized by a large accumulation of fructose 6-phosphate. Symptoms of the disorder include anemia, increased muscle glycogen content and myotonia. Currently, the major treatment for Glycogen storage disease, Type VII is associated with diet management.
References
Glycogenosis, Type VII. Tarui Disease References
Toscano A, Musumeci O: Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol. 2007 Oct;26(2):105-7.
Pubmed: 18421897
Glycolysis References
Thelen AP, Wilson JE: Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from novikoff ascites tumor. Arch Biochem Biophys. 1991 May 1;286(2):645-51. doi: 10.1016/0003-9861(91)90094-y.
Pubmed: 1897984
Ichihara J, Shinohara Y, Kogure K, Terada H: Nucleotide sequence of the 5'-flanking region of the rat type II hexokinase gene. Biochim Biophys Acta. 1995 Feb 21;1260(3):365-8. doi: 10.1016/0167-4781(94)00226-s.
Pubmed: 7873617
Mathupala SP, Rempel A, Pedersen PL: Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem. 1995 Jul 14;270(28):16918-25. doi: 10.1074/jbc.270.28.16918.
Pubmed: 7622509
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Maurya DK, Sundaram CS, Bhargava P: Proteome profile of the mature rat olfactory bulb. Proteomics. 2009 May;9(9):2593-9. doi: 10.1002/pmic.200800664.
Pubmed: 19343716
Ma Z, Ramanadham S, Kempe K, Hu Z, Ladenson J, Turk J: Characterization of expression of phosphofructokinase isoforms in isolated rat pancreatic islets and purified beta cells and cloning and expression of the rat phosphofructokinase-A isoform. Biochim Biophys Acta. 1996 Aug 14;1308(2):151-63. doi: 10.1016/0167-4781(96)00088-7.
Pubmed: 8764833
Mukai T, Joh K, Arai Y, Yatsuki H, Hori K: Tissue-specific expression of rat aldolase A mRNAs. Three molecular species differing only in the 5'-terminal sequences. J Biol Chem. 1986 Mar 5;261(7):3347-54.
Pubmed: 3753977
Joh K, Mukai T, Yatsuki H, Hori K: Rat aldolase A messenger RNA: the nucleotide sequence and multiple mRNA species with different 5'-terminal regions. Gene. 1985;39(1):17-24. doi: 10.1016/0378-1119(85)90102-7.
Pubmed: 2416636
Joh K, Arai Y, Mukai T, Hori K: Expression of three mRNA species from a single rat aldolase A gene, differing in their 5' non-coding regions. J Mol Biol. 1986 Aug 5;190(3):401-10. doi: 10.1016/0022-2836(86)90011-2.
Pubmed: 3783705
Haber BA, Chin S, Chuang E, Buikhuisen W, Naji A, Taub R: High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest. 1995 Feb;95(2):832-41. doi: 10.1172/JCI117733.
Pubmed: 7860767
Lange AJ, Argaud D, el-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ: Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP. Biochem Biophys Res Commun. 1994 May 30;201(1):302-9. doi: 10.1006/bbrc.1994.1702.
Pubmed: 8198588
Shingu R, Nakajima H, Horikawa Y, Hamaguchi T, Yamasaki T, Miyagawa J, Namba M, Hanafusa T, Matsuzawa Y: Expression and distribution of glucose-6-phosphatase catalytic subunit messenger RNA and its changes in the diabetic state. Res Commun Mol Pathol Pharmacol. 1996 Jul;93(1):13-24.
Pubmed: 8865366
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000531
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings