Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
NF-kB Signaling Pathway
Mus musculus
Category:
Protein Pathway
Sub-Categories:
Stress-Activated Signaling
Pathogen-Activated Signaling
Gene Regulatory
Kinase Signaling
Immunological
Cellular Response
Created: 2018-09-20
Last Updated: 2019-09-15
NF-κB can be found in almost all animal cells. NF-κB is crucial for cell growth since it can control cytokine production, DNA transcription, as well as cell survival. NF-κB can also respond to stress, free radicals, and UV irradiation. It can also respond to bacterial and viral antigens; therefore, it plays an important role in the immune response of infections. Various diseases such as cancer and immune diseases (and more) can be related to the incorrect regulation of the NF-κB complex. The activation of NF-κB involves two major signalling pathways: the canonical pathways, which responds to diverse stimuli such as ligands of various cytokine receptors, pattern-recognition receptors (PRRs), and the noncanonical (or alternative) pathway, which selectively responds to a specific group of stimuli, such as groups of ligands of a subset of TNFR superfamily members (e.g. LTβR, BAFFR, CD40 and RANK). Both pathways are important for regulating immune and inflammatory responses despite their differences in signalling mechanism.
References
NF-kB Signaling Pathway References
Nolan GP, Ghosh S, Liou HC, Tempst P, Baltimore D: DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell. 1991 Mar 8;64(5):961-9. doi: 10.1016/0092-8674(91)90320-x.
Pubmed: 2001591
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Linker RA, Baeuerle PA, Kaltschmidt C: Cloning of the murine relA (p65 NF-kappa B) gene and comparison to the human gene reveals a distinct first intron. Gene. 1996 Oct 17;176(1-2):119-24. doi: 10.1016/0378-1119(96)00231-4.
Pubmed: 8918242
Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D: Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell. 1990 Sep 7;62(5):1019-29. doi: 10.1016/0092-8674(90)90276-k.
Pubmed: 2203532
Inoue J, Kerr LD, Kakizuka A, Verma IM: I kappa B gamma, a 70 kd protein identical to the C-terminal half of p110 NF-kappa B: a new member of the I kappa B family. Cell. 1992 Mar 20;68(6):1109-20. doi: 10.1016/0092-8674(92)90082-n.
Pubmed: 1339305
Gerondakis S, Morrice N, Richardson IB, Wettenhall R, Fecondo J, Grumont RJ: The activity of a 70 kilodalton I kappa B molecule identical to the carboxyl terminus of the p105 NF-kappa B precursor is modulated by protein kinase A. Cell Growth Differ. 1993 Aug;4(8):617-27.
Pubmed: 8398903
Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, Hibi M, Nakabeppu Y, Shiba T, Yamamoto KI: JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol. 1999 Nov;19(11):7539-48. doi: 10.1128/mcb.19.11.7539.
Pubmed: 10523642
Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993 Apr 16;260(5106):315-9. doi: 10.1126/science.8385802.
Pubmed: 8385802
Deak JC, Templeton DJ: Regulation of the activity of MEK kinase 1 (MEKK1) by autophosphorylation within the kinase activation domain. Biochem J. 1997 Feb 15;322 ( Pt 1):185-92. doi: 10.1042/bj3220185.
Pubmed: 9078260
Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T: Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet. 1999 May;22(1):74-7. doi: 10.1038/8780.
Pubmed: 10319865
Xiao G, Harhaj EW, Sun SC: NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001 Feb;7(2):401-9.
Pubmed: 11239468
Mock BA, Connelly MA, McBride OW, Kozak CA, Marcu KB: CHUK, a conserved helix-loop-helix ubiquitous kinase, maps to human chromosome 10 and mouse chromosome 19. Genomics. 1995 May 20;27(2):348-51. doi: 10.1006/geno.1995.1054.
Pubmed: 7558004
Connelly MA, Marcu KB: CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res. 1995;41(6):537-49.
Pubmed: 8777433
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Reichwald K, Thiesen J, Wiehe T, Weitzel J, Poustka WA, Rosenthal A, Platzer M, Stratling WH, Kioschis P: Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions. Mamm Genome. 2000 Mar;11(3):182-90.
Pubmed: 10723722
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5;7(5):e1000112. doi: 10.1371/journal.pbio.1000112. Epub 2009 May 26.
Pubmed: 19468303
Trofimova M, Sprenkle AB, Green M, Sturgill TW, Goebl MG, Harrington MA: Developmental and tissue-specific expression of mouse pelle-like protein kinase. J Biol Chem. 1996 Jul 26;271(30):17609-12. doi: 10.1074/jbc.271.30.17609.
Pubmed: 8663605
Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE: The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett. 1997 Jan 27;402(1):81-4. doi: 10.1016/s0014-5793(96)01506-2.
Pubmed: 9013863
Hardiman G, Jenkins NA, Copeland NG, Gilbert DJ, Garcia DK, Naylor SL, Kastelein RA, Bazan JF: Genetic structure and chromosomal mapping of MyD88. Genomics. 1997 Oct 15;45(2):332-9. doi: 10.1006/geno.1997.4940.
Pubmed: 9344657
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0063813
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings