Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Succinate Signalling
Mus musculus
Category:
Protein Pathway
Sub-Categories:
Immunological
Cellular Response
Created: 2018-09-20
Last Updated: 2019-09-22
The Krebs cycle, also known as the citric acid cycle (CAC) or tricarboxylic acid cycle (TCA cycle) occurs in the mitochondria, and it involves the oxidation of acetyl-CoA from glycolysis to form molecules of ATP, as well as NADH, which will later be used to form more ATP. Intermediates from the Krebs cycle can be used as inflammatory signals in the body, specifically in immune cells such as macrophages. Succinic acid, or its anion succinate, can leave the mitochondria and can directly inhibit the prolyl 4-hydroxylase subunit alpha-3 protein, which then allows for additional activation of the hypoxia-inducible factor 1-alpha (HF-1α). The higher levels of HF-1α enhance the expression of genes, including those for interleukin-1 beta (IL-1β). Succinic acid is also necessary for the succinylation of proteins, leading to changes in their structure and function.
Another intermediate of the Krebs cycle, NAD, activates the NAD-dependent protein deacetylase sirtuin-3, which is involved in the deacetylase of proteins in the cell, regulating ATP levels and promoting mtDNA transcription when needed. Activated sirtuin-3 inhibits NACHT, LRR and PYD domains-containing protein 3, which works to activate the inflammasome, and thus the increase in NAD+ leads to anti-inflammatory actions in the body.
Citric acid is another intermediate of the Krebs cycle, and it activates the production of reactive oxygen species, nitric oxide, which is the precursor for reactive nitrogen species, and prostaglandins. Prostaglandins can act as vasodilators, and as such are involved in the inflammation response.
Finally, glutamine is important for immune cells to carry out their functions, and when LPS binds to the Toll-like receptor 4 (TLR4) on the cell surface, activating this response, extra L-glutamine can be transported into the cell to fill this need. The L-glutamine can then be converted to oxoglutaric acid, which is important in the Krebs cycle, leading to the effects from its intermediates on the rest of the inflammatory response.
References
Succinate Signalling References
Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D: Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) J Exp Med. 1999 Feb 15;189(4):615-25. doi: 10.1084/jem.189.4.615.
Pubmed: 9989976
Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M: Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol. 2010 Apr;22(4):271-80. doi: 10.1093/intimm/dxq005. Epub 2010 Feb 4.
Pubmed: 20133493
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010 Feb;11(2):155-61. doi: 10.1038/ni.1836. Epub 2009 Dec 27.
Pubmed: 20037584
Kukkola L, Hieta R, Kivirikko KI, Myllyharju J: Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J Biol Chem. 2003 Nov 28;278(48):47685-93. doi: 10.1074/jbc.M306806200. Epub 2003 Sep 18.
Pubmed: 14500733
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Li H, Ko HP, Whitlock JP: Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1alpha. J Biol Chem. 1996 Aug 30;271(35):21262-7. doi: 10.1074/jbc.271.35.21262.
Pubmed: 8702901
Luo G, Gu YZ, Jain S, Chan WK, Carr KM, Hogenesch JB, Bradfield CA: Molecular characterization of the murine Hif-1 alpha locus. Gene Expr. 1997;6(5):287-99.
Pubmed: 9368100
Wenger RH, Rolfs A, Kvietikova I, Spielmann P, Zimmermann DR, Gassmann M: The mouse gene for hypoxia-inducible factor-1alpha--genomic organization, expression and characterization of an alternative first exon and 5' flanking sequence. Eur J Biochem. 1997 May 15;246(1):155-65. doi: 10.1111/j.1432-1033.1997.t01-1-00155.x.
Pubmed: 9210478
Gray PW, Glaister D, Chen E, Goeddel DV, Pennica D: Two interleukin 1 genes in the mouse: cloning and expression of the cDNA for murine interleukin 1 beta. J Immunol. 1986 Dec 1;137(11):3644-8.
Pubmed: 3491144
Telford JL, Macchia G, Massone A, Carinci V, Palla E, Melli M: The murine interleukin 1 beta gene: structure and evolution. Nucleic Acids Res. 1986 Dec 22;14(24):9955-63. doi: 10.1093/nar/14.24.9955.
Pubmed: 3492706
Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes. 2013 Oct;62(10):3404-17. doi: 10.2337/db12-1650. Epub 2013 Jul 8.
Pubmed: 23835326
Yang YH, Chen YH, Zhang CY, Nimmakayalu MA, Ward DC, Weissman S: Cloning and characterization of two mouse genes with homology to the yeast Sir2 gene. Genomics. 2000 Nov 1;69(3):355-69. doi: 10.1006/geno.2000.6360.
Pubmed: 11056054
Cooper HM, Huang JY, Verdin E, Spelbrink JN: A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein. PLoS One. 2009;4(3):e4986. doi: 10.1371/journal.pone.0004986. Epub 2009 Mar 31.
Pubmed: 19333382
Kikuchi-Yanoshita R, Taketomi Y, Koga K, Sugiki T, Atsumi Y, Saito T, Ishii S, Hisada M, Suzuki-Nishimura T, Uchida MK, Moon TC, Chang HW, Sawada M, Inagaki N, Nagai H, Murakami M, Kudo I: Induction of PYPAF1 during in vitro maturation of mouse mast cells. J Biochem. 2003 Nov;134(5):699-709. doi: 10.1093/jb/mvg195.
Pubmed: 14688236
Anderson JP, Mueller JL, Rosengren S, Boyle DL, Schaner P, Cannon SB, Goodyear CS, Hoffman HM: Structural, expression, and evolutionary analysis of mouse CIAS1. Gene. 2004 Aug 18;338(1):25-34. doi: 10.1016/j.gene.2004.05.002.
Pubmed: 15302403
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5;7(5):e1000112. doi: 10.1371/journal.pbio.1000112. Epub 2009 May 26.
Pubmed: 19468303
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0083294
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings