Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
NF-kB Signaling Pathway
Bos taurus
Category:
Protein Pathway
Sub-Categories:
Stress-Activated Signaling
Pathogen-Activated Signaling
Gene Regulatory
Kinase Signaling
Immunological
Cellular Response
Created: 2018-09-20
Last Updated: 2019-09-15
NF-κB can be found in almost all animal cells. NF-κB is crucial for cell growth since it can control cytokine production, DNA transcription, as well as cell survival. NF-κB can also respond to stress, free radicals, and UV irradiation. It can also respond to bacterial and viral antigens; therefore, it plays an important role in the immune response of infections. Various diseases such as cancer and immune diseases (and more) can be related to the incorrect regulation of the NF-κB complex. The activation of NF-κB involves two major signalling pathways: the canonical pathways, which responds to diverse stimuli such as ligands of various cytokine receptors, pattern-recognition receptors (PRRs), and the noncanonical (or alternative) pathway, which selectively responds to a specific group of stimuli, such as groups of ligands of a subset of TNFR superfamily members (e.g. LTβR, BAFFR, CD40 and RANK). Both pathways are important for regulating immune and inflammatory responses despite their differences in signalling mechanism.
References
NF-kB Signaling Pathway References
Doleschall M, Mayer B, Cervenak J, Cervenak L, Kacskovics I: Cloning, expression and characterization of the bovine p65 subunit of NFkappaB. Dev Comp Immunol. 2007;31(9):945-61. doi: 10.1016/j.dci.2006.12.007. Epub 2007 Jan 24.
Pubmed: 17306370
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4):R42. doi: 10.1186/gb-2009-10-4-r42. Epub 2009 Apr 24.
Pubmed: 19393038
Yamaji D, Kitamura H, Kimura K, Matsushita Y, Okada H, Shiina T, Morimatsu M, Saito M: Cloning of bovine MAIL and its mRNA expression in white blood cells of Holstein cows. Vet Immunol Immunopathol. 2004 Apr;98(3-4):175-84. doi: 10.1016/j.vetimm.2003.12.004.
Pubmed: 15010226
Tan I, Lai J, Yong J, Li SF, Leung T: Chelerythrine perturbs lamellar actomyosin filaments by selective inhibition of myotonic dystrophy kinase-related Cdc42-binding kinase. FEBS Lett. 2011 May 6;585(9):1260-8. doi: 10.1016/j.febslet.2011.03.054. Epub 2011 Mar 30.
Pubmed: 21457715
Rottenberg S, Schmuckli-Maurer J, Grimm S, Heussler VT, Dobbelaere DA: Characterization of the bovine IkappaB kinases (IKK)alpha and IKKbeta, the regulatory subunit NEMO and their substrate IkappaBalpha. Gene. 2002 Oct 16;299(1-2):293-300. doi: 10.1016/s0378-1119(02)01011-9.
Pubmed: 12459277
Connor EE, Cates EA, Williams JL, Bannerman DD: Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules. Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):302-8. doi: 10.1016/j.vetimm.2006.03.003. Epub 2006 Apr 18.
Pubmed: 16621030
Yang W, Zerbe H, Petzl W, Brunner RM, Gunther J, Draing C, von Aulock S, Schuberth HJ, Seyfert HM: Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol. 2008 Mar;45(5):1385-97. doi: 10.1016/j.molimm.2007.09.004. Epub 2007 Oct 22.
Pubmed: 17936907
Werling D, Piercy J, Coffey TJ: Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells-potential role in pathogen discrimination? Vet Immunol Immunopathol. 2006 Jul 15;112(1-2):2-11. doi: 10.1016/j.vetimm.2006.03.007. Epub 2006 May 15.
Pubmed: 16701904
Cates EA, Connor EE, Mosser DM, Bannerman DD: Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis. Comp Immunol Microbiol Infect Dis. 2009 Nov;32(6):477-90. doi: 10.1016/j.cimid.2008.06.001. Epub 2008 Aug 28.
Pubmed: 18760477
Sauter KS, Brcic M, Franchini M, Jungi TW: Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet Immunol Immunopathol. 2007 Jul 15;118(1-2):92-104. doi: 10.1016/j.vetimm.2007.04.017. Epub 2007 May 3.
Pubmed: 17559944
Lee EK, Kehrli ME Jr, Taylor MJ: Cloning and sequencing of cDNA encoding bovine tumor necrosis factor (TNF)-receptor I. Vet Immunol Immunopathol. 1998 Feb 27;61(2-4):379-85.
Pubmed: 9613449
Szperka ME, Connor EE, Paape MJ, Williams JL, Bannerman DD: Characterization of bovine FAS-associated death domain gene. Anim Genet. 2005 Feb;36(1):63-6. doi: 10.1111/j.1365-2052.2004.01207.x.
Pubmed: 15670133
Mertens B, Muriuki C, Gaidulis L: Cloning of two members of the TNF-superfamily in cattle: CD40 ligand and tumor necrosis factor alpha. Immunogenetics. 1995;42(5):430-1.
Pubmed: 7590981
Cludts I, Cleuter Y, Kettmann R, Burny A, Droogmans L: Cloning and characterization of the tandemly arranged bovine lymphotoxin and tumour necrosis factor-alpha genes. Cytokine. 1993 Jul;5(4):336-41.
Pubmed: 8260599
Dietz AB, Neibergs HL, Womack JE, Kehrli ME Jr: Rapid communication: single strand conformational polymorphism (SSCP) of bovine tumor necrosis factor alpha. J Anim Sci. 1997 Sep;75(9):2567. doi: 10.2527/1997.7592567x.
Pubmed: 9303477
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0063813
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings