Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
LPS and Citrate Signaling and Inflammation
Bos taurus
Category:
Protein Pathway
Sub-Categories:
Immunological
Pathogen-Activated Signaling
Cellular Response
Created: 2018-09-20
Last Updated: 2019-09-15
Lipopolysaccharides (LPS) are essential to the structure and function of the Gram-negative bacterial outer membrane, providing both stability (via an increased negative charge) and protection. Also referred to as lipoglycans and endotoxins, these large molecules are potent activators of animal immune systems. Following detection by macrophage and dendritic cell TLR4 (Toll-like receptor 4), signalling cascades activate transcription factors such as NF-κB which lead to the production of pro-inflammatory molecules (e.g. cytokines, prostaglandins, ROS, and nitric oxide). Inflammation, the body's response to infection and injury, is vital for the elimination of harmful irritants and the initiation of tissue repair. The production of citrate is upregulated in LPS-activated dendritic cells (via upregulation of glycolysis) in order to increase the rate of fatty acid biosynthesis. Fatty acids are vital for cytokine production and for extending the cell membrane in order to allow for more antigens to be presented. A mitochondrial citrate transport protein exports citrate into the cytoplasm where it is catabolized into acetyl-CoA and oxaloacetate. Acetyl-CoA is incorporated into phospholipids and used to acetylate proteins. Oxaloacetate can be broken down further into NADPH which is required to synthesize reactive oxygen species (ROS) and nitric oxide (NO).
References
LPS and Citrate Signaling and Inflammation References
Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011 Nov 11;334(6057):806-9. doi: 10.1126/science.1207861.
Pubmed: 22076378
Sonstegard TS, Kappes SM: Mapping of the SDHA locus to bovine chromosome 20. Anim Genet. 1999 Dec;30(6):473.
Pubmed: 10612251
Birch-Machin MA, Farnsworth L, Ackrell BA, Cochran B, Jackson S, Bindoff LA, Aitken A, Diamond AG, Turnbull DM: The sequence of the flavoprotein subunit of bovine heart succinate dehydrogenase. J Biol Chem. 1992 Jun 5;267(16):11553-8.
Pubmed: 1375942
Morris AA, Farnsworth L, Ackrell BA, Turnbull DM, Birch-Machin MA: The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994 Mar 29;1185(1):125-8. doi: 10.1016/0005-2728(94)90203-8.
Pubmed: 8142412
Cochran B, Capaldi RA, Ackrell BA: The cDNA sequence of beef heart CII-3, a membrane-intrinsic subunit of succinate-ubiquinone oxidoreductase. Biochim Biophys Acta. 1994 Nov 1;1188(1-2):162-6. doi: 10.1016/0005-2728(94)90035-3.
Pubmed: 7947903
Harhay GP, Sonstegard TS, Keele JW, Heaton MP, Clawson ML, Snelling WM, Wiedmann RT, Van Tassell CP, Smith TP: Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics. 2005 Nov 23;6:166. doi: 10.1186/1471-2164-6-166.
Pubmed: 16305752
Yu L, Wei YY, Usui S, Yu CA: Cytochrome b560 (QPs1) of mitochondrial succinate-ubiquinone reductase. Immunochemistry, cloning, and nucleotide sequencing. J Biol Chem. 1992 Dec 5;267(34):24508-15.
Pubmed: 1447196
Shenoy SK, Yu L, Yu CA: The smallest membrane anchoring subunit (QPs3) of bovine heart mitochondrial succinate-ubiquinone reductase. Cloning, sequencing, topology, and Q-binding domain. J Biol Chem. 1997 Jul 11;272(28):17867-72. doi: 10.1074/jbc.272.28.17867.
Pubmed: 9211943
Mao J, Marcos S, Davis SK, Burzlaff J, Seyfert HM: Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. Biochem J. 2001 Aug 15;358(Pt 1):127-35. doi: 10.1042/0264-6021:3580127.
Pubmed: 11485560
Iacobazzi V, De Palma A, Palmieri F: Cloning and sequencing of the bovine cDNA encoding the mitochondrial tricarboxylate carrier protein. Biochim Biophys Acta. 1996 Oct 2;1284(1):9-12. doi: 10.1016/0005-2736(96)00115-0.
Pubmed: 8865808
Ikeda A, Takata M, Taniguchi T, Sekikawa K: Molecular cloning of bovine CD14 gene. J Vet Med Sci. 1997 Aug;59(8):715-9. doi: 10.1292/jvms.59.715.
Pubmed: 9300371
Diamond G, Russell JP, Bevins CL: Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5156-60. doi: 10.1073/pnas.93.10.5156.
Pubmed: 8643545
Sauter KS, Brcic M, Franchini M, Jungi TW: Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet Immunol Immunopathol. 2007 Jul 15;118(1-2):92-104. doi: 10.1016/j.vetimm.2007.04.017. Epub 2007 May 3.
Pubmed: 17559944
Yang W, Zerbe H, Petzl W, Brunner RM, Gunther J, Draing C, von Aulock S, Schuberth HJ, Seyfert HM: Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol. 2008 Mar;45(5):1385-97. doi: 10.1016/j.molimm.2007.09.004. Epub 2007 Oct 22.
Pubmed: 17936907
Werling D, Piercy J, Coffey TJ: Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells-potential role in pathogen discrimination? Vet Immunol Immunopathol. 2006 Jul 15;112(1-2):2-11. doi: 10.1016/j.vetimm.2006.03.007. Epub 2006 May 15.
Pubmed: 16701904
Cates EA, Connor EE, Mosser DM, Bannerman DD: Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis. Comp Immunol Microbiol Infect Dis. 2009 Nov;32(6):477-90. doi: 10.1016/j.cimid.2008.06.001. Epub 2008 Aug 28.
Pubmed: 18760477
Connor EE, Cates EA, Williams JL, Bannerman DD: Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules. Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):302-8. doi: 10.1016/j.vetimm.2006.03.003. Epub 2006 Apr 18.
Pubmed: 16621030
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4):R42. doi: 10.1186/gb-2009-10-4-r42. Epub 2009 Apr 24.
Pubmed: 19393038
Rottenberg S, Schmuckli-Maurer J, Grimm S, Heussler VT, Dobbelaere DA: Characterization of the bovine IkappaB kinases (IKK)alpha and IKKbeta, the regulatory subunit NEMO and their substrate IkappaBalpha. Gene. 2002 Oct 16;299(1-2):293-300. doi: 10.1016/s0378-1119(02)01011-9.
Pubmed: 12459277
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0100046
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings