Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Toll-Like Receptor Pathway 1
Rattus norvegicus
Category:
Protein Pathway
Sub-Categories:
Immunological
Pathogen-Activated Signaling
Gene Regulatory
Cellular Response
Created: 2018-09-20
Last Updated: 2019-08-16
Toll-like receptors (TLRs) are part of the innate immune system. These receptors recognize pathogen-associated molecular patterns from different microbes. TLR2 recognizes a variety of PAMPs including lipoproteins, peptidoglycans, lipotechoic acids, and mannan. TLR3 recognizes viral double-stranded RNA, small interfering RNAsa, and self-RNAs. TLR4 recognizes lipopolysaccharides. TLR7 recognizes single-stranded RNA. TLR9 recognizes bacterial and viral DNA with unmethylated CpG-DNA motifs. TLRs are synthesized in the endoplasmic reticulum, moved to the Golgi, and then recruited to the cell surface or intracellular compartments. TLRs recruit adaptor molecules such as MYD88, TRIF, TIRAP, or TRAM leading to the activation of transcription factors NF-kappa-B causing innate immune responses. MYD88 is recruited by all TLRs. Adaptor TIRAP recruits MYD88 to cell surface TLRs, including TLR2 and TLR4. TLR signaling molecule IRAK1 activation activates TRAF6 causing the activation of IKK complex then NF-kappa-B and kinases. Activated TRAF6 promotes polyubiquination of TRAF6 and TAK1, TAB1, TAB2 complex. TAK1 activates pathways causing activation of IKK complex and NF-kappa-B and MAPK pathways. The IKK complex phosphorylates and activates IKK-beta. IKK complex also phosphorylates I-kappa-B-alpha allowing dissociation and translocation of NF-kappa-B to the nucleus resulting in proinflammatory gene expression. Activated TAK1 complex also activates p38 and JNK, regulating the activation of AP-1 transcription factors to regulate inflammatory responses. Many transmembrane molecules, such as glycophosphatidylinositol-anchored protein CD14, also regulate TLR signaling pathways.
References
Toll-Like Receptor Pathway 1 References
Hamil KG, Hall SH: Cloning of rat Sertoli cell follicle-stimulating hormone primary response complementary deoxyribonucleic acid: regulation of TSC-22 gene expression. Endocrinology. 1994 Mar;134(3):1205-12. doi: 10.1210/endo.134.3.8161377.
Pubmed: 8161377
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156-60. doi: 10.1038/369156a0.
Pubmed: 8177321
Clerk A, Fuller SJ, Michael A, Sugden PH: Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem. 1998 Mar 27;273(13):7228-34. doi: 10.1074/jbc.273.13.7228.
Pubmed: 9516415
Park HS, Huh SH, Kim MS, Lee SH, Choi EJ: Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14382-7. doi: 10.1073/pnas.97.26.14382.
Pubmed: 11121042
Galea E, Reis DJ, Fox ES, Xu H, Feinstein DL: CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J Neuroimmunol. 1996 Jan;64(1):19-28. doi: 10.1016/0165-5728(95)00143-3.
Pubmed: 8598386
Takai N, Kataoka M, Higuchi Y, Matsuura K, Yamamoto S: Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol. 1997 Jun;61(6):736-44. doi: 10.1002/jlb.61.6.736.
Pubmed: 9201265
Liu S, Khemlani LS, Shapiro RA, Johnson ML, Liu K, Geller DA, Watkins SC, Goyert SM, Billiar TR: Expression of CD14 by hepatocytes: upregulation by cytokines during endotoxemia. Infect Immun. 1998 Nov;66(11):5089-98.
Pubmed: 9784508
Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA: Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999 Aug;104(3):271-80. doi: 10.1172/JCI6709.
Pubmed: 10430608
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Heide H, Bleier L, Steger M, Ackermann J, Drose S, Schwamb B, Zornig M, Reichert AS, Koch I, Wittig I, Brandt U: Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012 Oct 3;16(4):538-49. doi: 10.1016/j.cmet.2012.08.009. Epub 2012 Sep 13.
Pubmed: 22982022
Xu S, Robbins DJ, Christerson LB, English JM, Vanderbilt CA, Cobb MH: Cloning of rat MEK kinase 1 cDNA reveals an endogenous membrane-associated 195-kDa protein with a large regulatory domain. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5291-5. doi: 10.1073/pnas.93.11.5291.
Pubmed: 8643568
Chadee DN, Yuasa T, Kyriakis JM: Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol. 2002 Feb;22(3):737-49. doi: 10.1128/mcb.22.3.737-749.2002.
Pubmed: 11784851
Ye B, Yu WP, Thomas GM, Huganir RL: GRASP-1 is a neuronal scaffold protein for the JNK signaling pathway. FEBS Lett. 2007 Sep 18;581(23):4403-10. doi: 10.1016/j.febslet.2007.08.008. Epub 2007 Aug 14.
Pubmed: 17761173
Nemoto S, DiDonato JA, Lin A: Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol Cell Biol. 1998 Dec;18(12):7336-43. doi: 10.1128/mcb.18.12.7336.
Pubmed: 9819420
Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J: The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem. 2005 Oct 21;280(42):35625-9. doi: 10.1074/jbc.C500237200. Epub 2005 Aug 3.
Pubmed: 16079148
Jobin C, Sartor RB: The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol. 2000 Mar;278(3):C451-62. doi: 10.1152/ajpcell.2000.278.3.C451.
Pubmed: 10712233
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0063899
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings