Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ether Lipid Metabolism
Drosophila melanogaster
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-02-04
Last Updated: 2023-10-28
Ether lipids are typically glycerophospholipids where the glycerol backbone has lipids attached by both an ether bond at the sn-1 position and an acyl group at the sn-2 position.
This pathway starts with dihydroxyacetone phosphate acyl ester which comes from glycerophospholipid metabolism. In the peroxisome, it reacts with a long chain alcohol, catalyzed by alkyldihydroxyacetonephosphate synthase, and forms an alkyl-glycerone 3-phosphate. Following this, the enzyme acylglycerone-phosphate reductase adds a hydrogen ion to the alkyl-glycerone 3-phosphate, forming a 1-alkyl-sn-glycerol 3-phosphate. Following this, a long-chain fatty acyl group is added, taken from a long-chain fatty acyl-CoA, and catalyzed by an acyltransferase to form a 2-acyl-1-alkyl-sn-glycero-3-phosphate. The phosphate is then removed in a reaction catalyzed by putative phosphatide phosphatase, forming 2-acyl-1-alkyl-sn-glycerol. This can then have a phosphoethanolamine group added by an ethanolaminephosphotransferase in the endoplasmic reticulum membrane, to form 2-acyl-1-alkyl-sn-glycero-3-phosphoethanolamine. This compound then is acted upon by a plasmanylethanolamine desaturase to form O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine can then react via phospholipase A2 to form a 1-alkenylglycerophosphoethanolamine, one of the end products of this pathway, or react via phospholipase D to form a 2-acyl-1-(1-alkenyl)-sn-glycero-3-phosphate, another end product of this pathway. It can also react reversibly using an ethanolaminephosphotransferase in the endoplasmic reticulum membrane to form or be formed from a 1-alkenyl-2-acylglycerol.
Alternatively, the 2-acyl-1-alkyl-sn-glycerol can react with CDP-choline, catalyzed by a diacylglycerol cholinephosphotransferase, in order to form a 1-radyl-2-acyl-sn-glycero-3-phosphocholine. This can then react using phospholipase A2 as the enzyme to form a 1-organyl-2-lyso-sn-glycero-3-phosphocholine which can then react using lysophosphatidylcholine acyltransferase in the endoplasmic reticulum membrane to reform 1-radyl-2-acyl-sn-glycero-3-phosphocholine. Alternatively, it can react with the lysophosphatidylcholine acyltransferase to form 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine, also known as platelet-activating factor, the final end product of this pathway. This platelet-activating factor can then interact with platelet-activating factor acetylhydrolase to reform 1-organyl-2-lyso-sn-glycero-3-phosphocholine.
References
Ether Lipid Metabolism References
Nagan N, Zoeller RA: Plasmalogens: biosynthesis and functions. Prog Lipid Res. 2001 May;40(3):199-229.
Pubmed: 11275267
Montrucchio G, Alloatti G, Camussi G: Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000 Oct;80(4):1669-99. doi: 10.1152/physrev.2000.80.4.1669.
Pubmed: 11015622
Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H: Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem. 2005 Jun 17;280(24):23084-93. doi: 10.1074/jbc.M413438200. Epub 2005 Mar 23.
Pubmed: 15788404
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC: The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185-95. doi: 10.1126/science.287.5461.2185.
Pubmed: 10731132
Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE: Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 2002;3(12):RESEARCH0083. doi: 10.1186/gb-2002-3-12-research0083. Epub 2002 Dec 31.
Pubmed: 12537572
Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE: A Drosophila full-length cDNA resource. Genome Biol. 2002;3(12):RESEARCH0080. doi: 10.1186/gb-2002-3-12-research0080. Epub 2002 Dec 23.
Pubmed: 12537569
Zhang N, Zhang J, Purcell KJ, Cheng Y, Howard K: The Drosophila protein Wunen repels migrating germ cells. Nature. 1997 Jan 2;385(6611):64-7. doi: 10.1038/385064a0.
Pubmed: 8985246
Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM: Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol. 2002;3(12):RESEARCH0079. doi: 10.1186/gb-2002-3-12-research0079. Epub 2002 Dec 23.
Pubmed: 12537568
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings