
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Phenylalanine Metabolism
Danio rerio
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-05-17
Last Updated: 2023-10-25
Phenylalanine is one of the 22 proteinogenic amino acids present in organisms, specifically its L-isomer. It is an alpha-amino acid, meaning the side chain is present on the first, or alpha, carbon of the compound. In this case, the side chain is a benzyl group, and as this is inert and hydrophobic, leading the amino acid itself to be neutral and non-polar. Phenylalanine is also an essential amino acid in zebrafish, meaning that they can not be synthesized de novo by the organism, and instead must be obtained from food sources, including supplements if necessary.
L-henylalanine can come from phenylalanine biosynthesis, and can be converted by phenylalanine hydroxylase to L-tyrosine. L-tyrosine can then be used in tyrosine metabolism. L-phenylalanine can also be converted to and from phenylpyruvic acid in the mitochondria by either aspartae aminotransferase or tyrosine transaminase. It can also be converted to phenylpyruvic acid in a non-reversible reaction catalyzed by amine oxidase. Phenylpyruvic acid can be converted to ortho-hydroxyphenylacetc acid by 4-hydroxyphenylpyruvate dioxygenase which removes a carbon atom from the structure and alters some bonds. It can also be reversibly converted to enol-phenylpyruvate by phenylpyruvate tautomerase. Finally, L-phenylalanine can be converted to phenylethylamine by aromatic-L-amino-acid decarboxylase, which removes a carbon dioxide molecule. From here, phenylethylamine is converted reversibly to phenylacetaldehyde by either a primary amine oxidase or monoamine oxidase. Phenylacetaldehyde is then converted reversibly to phenylacetic acid by aldehyde dehydrogenase, forming the final product of the pathway.
References
Phenylalanine Metabolism References
Arai H, Yamamoto T, Ohishi T, Shimizu T, Nakata T, Kudo T: Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology. 1999 Oct;145 ( Pt 10):2813-20. doi: 10.1099/00221287-145-10-2813.
Pubmed: 10537203
Diaz E, Ferrandez A, Garcia JL: Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J Bacteriol. 1998 Jun;180(11):2915-23.
Pubmed: 9603882
Ferrandez A, Garcia JL, Diaz E: Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol. 1997 Apr;179(8):2573-81. doi: 10.1128/jb.179.8.2573-2581.1997.
Pubmed: 9098055
Hwang JY, Park J, Seo JH, Cha M, Cho BK, Kim J, Kim BG: Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol Bioeng. 2009 Apr 1;102(5):1323-9. doi: 10.1002/bit.22178.
Pubmed: 19016485
Kaushik S, Georga I, Koumoundouros G: Growth and body composition of zebrafish (Danio rerio) larvae fed a compound feed from first feeding onward: toward implications on nutrient requirements. Zebrafish. 2011 Jun;8(2):87-95. doi: 10.1089/zeb.2011.0696. Epub 2011 Jun 10.
Pubmed: 21663450
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G: Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5. doi: 10.1073/pnas.1005399107. Epub 2010 Jul 21.
Pubmed: 20660314
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.
Pubmed: 23594743
Setini A, Pierucci F, Senatori O, Nicotra A: Molecular characterization of monoamine oxidase in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol. 2005 Jan;140(1):153-61. doi: 10.1016/j.cbpc.2004.10.002.
Pubmed: 15621520
Anichtchik O, Sallinen V, Peitsaro N, Panula P: Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio). J Comp Neurol. 2006 Oct 10;498(5):593-610. doi: 10.1002/cne.21057.
Pubmed: 16917825
Jin HJ, Xiang LX, Shao JZ: Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. Dev Comp Immunol. 2007;31(11):1131-44. doi: 10.1016/j.dci.2007.02.004. Epub 2007 Mar 28.
Pubmed: 17442392
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings