Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Biosynthesis of Siderophore Group Nonribosomal Peptides
Pseudomonas aeruginosa
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-08-12
Last Updated: 2019-09-15
2,3-Dihydroxybenzoate is synthesized from chorismate via isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being synthesized into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB hydrolyzes the pyruvate group of isochorismate to produce 2,3-dihydro-2,3-dihydroxybenzoate. The conversion of this latter compound to 2,3-dihydroxybenzoate is catalyzed by the EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
References
Biosynthesis of Siderophore Group Nonribosomal Peptides References
Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D: Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet. 1995 Nov 15;249(2):217-28. doi: 10.1007/bf00290369.
Pubmed: 7500944
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959-64. doi: 10.1038/35023079.
Pubmed: 10984043
Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS: Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol. 2001 Nov;183(21):6454-65. doi: 10.1128/JB.183.21.6454-6465.2001.
Pubmed: 11591691
Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, Dietrich LE: Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19420-5. doi: 10.1073/pnas.1213901109. Epub 2012 Nov 5.
Pubmed: 23129634
Kutchma AJ, Hoang TT, Schweizer HP: Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A:ACP transacylase (FabD). J Bacteriol. 1999 Sep;181(17):5498-504.
Pubmed: 10464226
Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT: Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 2010 Jan 22;5(1):e8842. doi: 10.1371/journal.pone.0008842.
Pubmed: 20107499
Serino L, Reimmann C, Visca P, Beyeler M, Chiesa VD, Haas D: Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol. 1997 Jan;179(1):248-57. doi: 10.1128/jb.179.1.248-257.1997.
Pubmed: 8982005
Ochsner UA, Vasil ML: Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4409-14. doi: 10.1073/pnas.93.9.4409.
Pubmed: 8633080
Duong F, Lazdunski A, Cami B, Murgier M: Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47-54. doi: 10.1016/0378-1119(92)90160-q.
Pubmed: 1427098
Poole K, Zhao Q, Neshat S, Heinrichs DE, Dean CR: The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. Microbiology. 1996 Jun;142 ( Pt 6):1449-58. doi: 10.1099/13500872-142-6-1449.
Pubmed: 8704984
Dennis JJ, Lafontaine ER, Sokol PA: Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa. J Bacteriol. 1996 Dec;178(24):7059-68. doi: 10.1128/jb.178.24.7059-7068.1996.
Pubmed: 8955385
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000783
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings