Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
TCA Cycle (Ubiquinol-3)
Pseudomonas aeruginosa
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-08-12
Last Updated: 2019-12-13
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel†for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.
References
TCA Cycle (Ubiquinol-3) References
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959-64. doi: 10.1038/35023079.
Pubmed: 10984043
Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM: Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 2006;7(10):R90. doi: 10.1186/gb-2006-7-10-r90. Epub 2006 Oct 12.
Pubmed: 17038190
Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J: Potential of liquid-isoelectric-focusing protein fractionation to improve phosphoprotein characterization of Pseudomonas aeruginosa PA14. Anal Bioanal Chem. 2014 Oct;406(25):6297-309. doi: 10.1007/s00216-014-8045-8. Epub 2014 Aug 6.
Pubmed: 25096199
Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J: Extracellular Ser/Thr/Tyr phosphorylated proteins of Pseudomonas aeruginosa PA14 strain. Proteomics. 2014 Sep;14(17-18):2017-30. doi: 10.1002/pmic.201400190. Epub 2014 Aug 19.
Pubmed: 24965220
Kapatral V, Bina X, Chakrabarty AM: Succinyl coenzyme A synthetase of Pseudomonas aeruginosa with a broad specificity for nucleoside triphosphate (NTP) synthesis modulates specificity for NTP synthesis by the 12-kilodalton form of nucleoside diphosphate kinase. J Bacteriol. 2000 Mar;182(5):1333-9. doi: 10.1128/jb.182.5.1333-1339.2000.
Pubmed: 10671455
Liao X, Charlebois I, Ouellet C, Morency MJ, Dewar K, Lightfoot J, Foster J, Siehnel R, Schweizer H, Lam JS, Hancock RE, Levesque RC: Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome. Microbiology. 1996 Jan;142 ( Pt 1):79-86. doi: 10.1099/13500872-142-1-79.
Pubmed: 8581173
DeVries CA, Hassett DJ, Flynn JL, Ohman DE: Genetic linkage in Pseudomonas aeruginosa of algT and nadB: mutation in nadB does not affect NAD biosynthesis or alginate production. Gene. 1995 Apr 14;156(1):63-7. doi: 10.1016/0378-1119(95)00028-5.
Pubmed: 7737518
DeVries CA, Ohman DE: Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol. 1994 Nov;176(21):6677-87. doi: 10.1128/jb.176.21.6677-6687.1994.
Pubmed: 7961421
Yan J, Deforet M, Boyle KE, Rahman R, Liang R, Okegbe C, Dietrich LEP, Qiu W, Xavier JB: Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network. PLoS Comput Biol. 2017 Aug 2;13(8):e1005677. doi: 10.1371/journal.pcbi.1005677. eCollection 2017 Aug.
Pubmed: 28767643
Donald LJ, Molgat GF, Duckworth HW: Cloning, sequencing, and expression of the gene for NADH-sensitive citrate synthase of Pseudomonas aeruginosa. J Bacteriol. 1989 Oct;171(10):5542-50. doi: 10.1128/jb.171.10.5542-5550.1989.
Pubmed: 2507528
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from SMP0121269
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0001019
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings