Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Pentose and Glucuronate Interconversions
Drosophila melanogaster
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2020-06-19
Last Updated: 2023-10-28
This pathway consists of two major interconversions, those of pentose and those of glucuronate. A pentose is an important monosaccharide involved in amino sugar and nucleotide sugar metabolism, the pentose phosphate pathway, and more biochemically relevant synthesis pathways. Glucuronate (D-glucuronic acid) is a carboxylic acid that is highly soluble in water and can link to many compounds in transport and elimination processes (glucuronidation). Its metabolic pathway begins with glucose 1-phosphate (G1P, a naturally occurring Cori ester consisting of a glucose molecule with a phosphate group on the 1'-carbon) from glycolysis. G1P is converted to uridine diphosphate glucose (UDP-glucose) via a reaction catalysed by a transferase enzyme. UDP-Glucose can also enter this pathway from galactose metabolism. An oxidoreductase then catalyses the conversion of UDP-glucose into UDP-glucuronate, which can form a glucuronide via a glucuronosyltransferase-catalysed reaction. In fruit fly glucuronate interconversion, there is one bidirectional enzyme characterized (EC 2.4.1.17, experimental evidence in UniProt) that converts UDP-glucuronate into beta-D-glucuronoside and two experimental enzymes that catalyse the reaction of UDP-glucuronate into D-glucuronate 1-phosphate (the latter two are not included in this pathway for brevity). A beta-glucuronidase then catalyses the conversion of beta-D-glucuronoside into glucuronic acid, which can either feed into inositol phosphate metabolism or be converted into L-gulonate in a reaction aided by NADP-dependent alcohol dehydrogenase. L-Gulonate is converted into 3-dehydro-L-gulonate via an oxideoreducatase-catalysed reaction, which can then form L-xylulose in a reaction involving an unknown enzyme. This ketose can feed into amino sugar and nucleotide sugar metabolism once converted into L-arabitol and subsequently into L-arabinose. Arabinose also feeds into ribulose formation. Pentose interconversion (via L-ribulose) is inferred but not yet characterized in Drosophila melanogaster (see KEGG for pathway details). Alternatively, xylulose, upon conversion into xylitol in a reaction catalysed by L-xylulose reductase, can feed into pentose interconversion, the pentose phosphate pathway, and pyruvate production. Currently, many enzymes involved in pentose interconversion have yet to be characterized in the common fruit fly, but its metabolites feed into the TCA Cycle, among other metabolic pathways, including those of glucuronate interconversion. One such compound is D-xylonolactone, which can both feed into the citrate cycle and produce pyruvate. Another enzyme to note is L-iditol 2-dehydrogenase, which is a widely-distributed enzyme that has been described in archaea, bacteria, yeast, plants and animals. It acts on a number of sugar alcohols, including (but not limited to) L-iditol, D-glucitol, D-xylitol, and D-galactitol. Enzymes from different organisms or tissues display different substrate specificity. The enzyme is specific to NAD+ and cannot use NADP+. In pentose and glucuronate interconversions, this enzyme catalyses the conversion of D-xylitol into D-xylulose. This ketopentose product is then phosphorylated (in a reaction catalysed by xylulokinase), forming xylulose 5-phosphate. The epimerase that converts xylulose 5-phosphate into ribulose 5-phosphate also catalyses the conversion of D-erythrose 4-phosphate into D-erythrulose 4-phosphate and D-threose 4-phosphate. D-Ribulose-5-phosphate feeds into the pentose phosphate pathway. This pathway contains many reversible enzyme-regulated reactions.
References
Pentose and Glucuronate Interconversions References
Davidson WS, Flynn TG: Compositional relatedness of aldehyde reductases from several species. J Mol Evol. 1979 Dec;14(4):251-8. doi: 10.1007/BF01732492.
Pubmed: 43905
Davidson WS, Flynn TG: Evolution of aldehyde reductase: an immunological approach to the relatedness of aldehyde reductase from different species. Adv Exp Med Biol. 1980;132:23-30. doi: 10.1007/978-1-4757-1419-7_3.
Pubmed: 6775512
AXELROD J, KALCKAR HM, MAXWELL ES, STROMINGER JL: Enzymatic formation of uridine diphosphoglucuronic acid. J Biol Chem. 1957 Jan;224(1):79-90.
Pubmed: 13398389
Druzhinina TN, Kusov YY, Shibaev VN, Kochetkov NK, Biely P, Kucar S, Bauer S: Uridine diphosphate 2-deoxyglucose. Chemical synthesis, enzymic oxidation and epimerization. Biochim Biophys Acta. 1975 Feb 13;381(2):301-7.
Pubmed: 1091296
DOYLE ML, KATZMAN PA, DOISY EA: Production and properties of bacterial beta-glucuronidase. J Biol Chem. 1955 Dec;217(2):921-30.
Pubmed: 13271452
de Groot MJ, Prathumpai W, Visser J, Ruijter GJ: Metabolic control analysis of Aspergillus niger L-arabinose catabolism. Biotechnol Prog. 2005 Nov-Dec;21(6):1610-6. doi: 10.1021/bp050189o.
Pubmed: 16321042
Jiang SS, Lin TY, Wang WB, Liu MC, Hsueh PR, Liaw SJ: Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother. 2010 May;54(5):2000-9. doi: 10.1128/AAC.01384-09. Epub 2010 Feb 16.
Pubmed: 20160049
Roeben A, Plitzko JM, Korner R, Bottcher UM, Siegers K, Hayer-Hartl M, Bracher A: Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J Mol Biol. 2006 Dec 8;364(4):551-60. doi: 10.1016/j.jmb.2006.08.079. Epub 2006 Sep 1.
Pubmed: 17010990
Thoden JB, Holden HM: Active site geometry of glucose-1-phosphate uridylyltransferase. Protein Sci. 2007 Jul;16(7):1379-88. doi: 10.1110/ps.072864707. Epub 2007 Jun 13.
Pubmed: 17567737
Sandhoff K, van Echten G, Schroder M, Schnabel D, Suzuki K: Metabolism of glycolipids: the role of glycolipid-binding proteins in the function and pathobiochemistry of lysosomes. Biochem Soc Trans. 1992 Aug;20(3):695-9. doi: 10.1042/bst0200695.
Pubmed: 1426613
KALCKAR HM, MAXWELL ES, STROMINGER JL: Some properties of uridine diphosphoglucose dehydrogenase. Arch Biochem Biophys. 1956 Nov;65(1):2-10. doi: 10.1016/0003-9861(56)90171-0.
Pubmed: 13373402
Chaudhuri A, Johnson R, Rakshit K, Bednarova A, Lackey K, Chakraborty SS, Krishnan N, Chaudhuri A: Exposure to Spectracide(R) causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling. Chemosphere. 2020 Jun;248:126037. doi: 10.1016/j.chemosphere.2020.126037. Epub 2020 Jan 27.
Pubmed: 32018111
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC: The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185-95. doi: 10.1126/science.287.5461.2185.
Pubmed: 10731132
Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM: Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol. 2002;3(12):RESEARCH0079. doi: 10.1186/gb-2002-3-12-research0079. Epub 2002 Dec 23.
Pubmed: 12537568
Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE: Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 2002;3(12):RESEARCH0083. doi: 10.1186/gb-2002-3-12-research0083. Epub 2002 Dec 31.
Pubmed: 12537572
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings