Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Trimethylamine N-oxide (TMAO)
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2021-02-22
Last Updated: 2023-10-25
Trimethylamine N-oxide(TMAO) is a uremic toxin compound that can be metabolized from dietary choline. There are 2 metabolic reactions that occur in order to get TMAO. First choline obtained from choline rich foods such as eggs or meat enter the gut and get metabolized to trimethylamine by gut microbes. Choline gets metabolized by the enzyme complex CutC/D into trimethylamine. This trimethylamine then enters a liver hepatocyte through portal circulation and gets metabolized by FMO3 to form TMAO. When this compound enters into systemic circulation it is shown to be a major uremic toxin when high levels of it are retained in the blood and not excreted in urine. TMAO is shown to cause coronary atherosclerosis, renal fibrosis through interaction with TGF-β1/Smad3 pathway, and increased mitochondrial reactive oxygen species which can cause oxidative stress.
References
Metabolism and Physiological Effects of Trimethylamine N-oxide (TMAO) References
Miyake, T., Mizuno, T., Mochizuki, T., Kimura, M., Matsuki, S., Irie, S., ... & Kusuhara, H. (2017). Involvement of organic cation transporters in the kinetics of trimethylamine N-oxide. Journal of pharmaceutical sciences, 106(9), 2542-2550.
Stremmel W, Schmidt KV, Schuhmann V, Kratzer F, Garbade SF, Langhans CD, Fricker G, Okun JG: Blood Trimethylamine-N-Oxide Originates from Microbiota Mediated Breakdown of Phosphatidylcholine and Absorption from Small Intestine. PLoS One. 2017 Jan 27;12(1):e0170742. doi: 10.1371/journal.pone.0170742. eCollection 2017.
Pubmed: 28129384
Kalnins, G., Kuka, J., Grinberga, S., Makrecka-Kuka, M., Liepinsh, E., Dambrova, M., & Tars, K. (2015). Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. Journal of Biological Chemistry, 290(35), 21732-21740.
Rath, S., Heidrich, B., Pieper, D. H., & Vital, M. (2017). Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 5(1), 1-14.
Craciun S, Balskus EP: Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12. doi: 10.1073/pnas.1215689109. Epub 2012 Nov 14.
Pubmed: 23151509
Fagone P, Jackowski S: Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta. 2013 Mar;1831(3):523-32. doi: 10.1016/j.bbalip.2012.09.009. Epub 2012 Sep 23.
Pubmed: 23010477
Lockman, P. R., & Allen, D. D. (2002). The transport of choline. Drug development and industrial pharmacy, 28(7), 749-771.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2016). Dietary reference values for choline. EFSA Journal, 14(8), e04484.
Chhibber-Goel, J., Gaur, A., Singhal, V., Parakh, N., Bhargava, B., & Sharma, A. (2016). The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert reviews in molecular medicine, 18.
Sitaraman R: Phospholipid catabolism by gut microbiota and the risk of cardiovascular disease. J Med Microbiol. 2013 Jun;62(Pt 6):948-950. doi: 10.1099/jmm.0.053587-0. Epub 2013 Mar 21.
Pubmed: 23518648
Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., DuGar, B., ... & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57-63.
Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., & Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nature neuroscience, 3(2), 120-125.
Zeisel, S. H. (2013). Nutrition in pregnancy: the argument for including a source of choline. International journal of women's health, 5, 193.
Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021). Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13(2), 142.
Hayer M, Bonisch H, Bruss M: Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet. 1999 Nov;63(Pt 6):473-82. doi: 10.1017/S0003480099007770.
Pubmed: 11388889
Sakata T, Anzai N, Shin HJ, Noshiro R, Hirata T, Yokoyama H, Kanai Y, Endou H: Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun. 2004 Jan 16;313(3):789-93. doi: 10.1016/j.bbrc.2003.11.175.
Pubmed: 14697261
Itoda M, Saito Y, Maekawa K, Hichiya H, Komamura K, Kamakura S, Kitakaze M, Tomoike H, Ueno K, Ozawa S, Sawada J: Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metab Pharmacokinet. 2004 Aug;19(4):308-12.
Pubmed: 15499200
Dolphin CT, Cullingford TE, Shephard EA, Smith RL, Phillips IR: Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem. 1996 Feb 1;235(3):683-9. doi: 10.1111/j.1432-1033.1996.00683.x.
Pubmed: 8654418
Dolphin CT, Riley JH, Smith RL, Shephard EA, Phillips IR: Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Genomics. 1997 Dec 1;46(2):260-7. doi: 10.1006/geno.1997.5031.
Pubmed: 9417913
Yeung CK, Adman ET, Rettie AE: Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria. Arch Biochem Biophys. 2007 Aug 15;464(2):251-9. doi: 10.1016/j.abb.2007.04.014. Epub 2007 May 2.
Pubmed: 17531949
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings