Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Phenylacetylglutamine
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2021-02-27
Last Updated: 2023-10-25
Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. It is a common metabolite that occurs naturally in human urine.
The highly-nitrogenous compound is most commonly encountered in human subjects with urea cycle disorders,. These conditions, such as uremia or hyperammonemia, tend to cause high levels of nitrogen in the form of ammonia in the blood. Uremic conditions are a result of defects in enzymes that convert ammonia to urea, the primary nitrogenous waste metabolite in the urea cycle. Phenylacetylglutamine is a product formed from the conjugation of phenylacetate and glutamine. Technically, it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals such as the dog, cat, rat, monkey, sheep, and horse do not excrete this compound. Phenylacetyl-CoA and L-glutamine react to form phenylacetylglutamine and coenzyme A. The enzyme (glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a polypeptide species distinct from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia. It has been shown that over 50% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidney's preferential filtration of conjugated phenylacetic acid. Phenylacetylglutamine is a microbial metabolite found in Christensenellaceae, Lachnospiraceae and Ruminococcaceae.
References
Metabolism and Physiological Effects of Phenylacetylglutamine References
Evenepoel, P., Meijers, B. K., Bammens, B. R., & Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. Kidney International, 76, S12-S19.
Moldave, K., & Meister, A. (1957). Synthesis of phenylacetylglutamine by human tissue. Journal of Biological Chemistry, 229(1), 463-476.
Gryp T, Vanholder R, Vaneechoutte M, Glorieux G: p-Cresyl Sulfate. Toxins (Basel). 2017 Jan 29;9(2). pii: toxins9020052. doi: 10.3390/toxins9020052.
Pubmed: 28146081
Kaufman, S. (1999). A model of human phenylalanine metabolism in normal subjects and in phenylketonuric patients. Proceedings of the National Academy of Sciences, 96(6), 3160-3164.
Mair RD, Sirich TL, Meyer TW: Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins (Basel). 2018 Jun 2;10(6). pii: toxins10060226. doi: 10.3390/toxins10060226.
Pubmed: 29865226
van der Westhuizen FH, Pretorius PJ, Erasmus E: The utilization of alanine, glutamic acid, and serine as amino acid substrates for glycine N-acyltransferase. J Biochem Mol Toxicol. 2000;14(2):102-9.
Pubmed: 10630424
Matsuo M, Terai K, Kameda N, Matsumoto A, Kurokawa Y, Funase Y, Nishikawa K, Sugaya N, Hiruta N, Kishimoto T: Designation of enzyme activity of glycine-N-acyltransferase family genes and depression of glycine-N-acyltransferase in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2012 Apr 20;420(4):901-6. doi: 10.1016/j.bbrc.2012.03.099. Epub 2012 Mar 27.
Pubmed: 22475485
Taylor TD, Noguchi H, Totoki Y, Toyoda A, Kuroki Y, Dewar K, Lloyd C, Itoh T, Takeda T, Kim DW, She X, Barlow KF, Bloom T, Bruford E, Chang JL, Cuomo CA, Eichler E, FitzGerald MG, Jaffe DB, LaButti K, Nicol R, Park HS, Seaman C, Sougnez C, Yang X, Zimmer AR, Zody MC, Birren BW, Nusbaum C, Fujiyama A, Hattori M, Rogers J, Lander ES, Sakaki Y: Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature. 2006 Mar 23;440(7083):497-500. doi: 10.1038/nature04632.
Pubmed: 16554811
Fujino T, Takei YA, Sone H, Ioka RX, Kamataki A, Magoori K, Takahashi S, Sakai J, Yamamoto TT: Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. J Biol Chem. 2001 Sep 21;276(38):35961-6. doi: 10.1074/jbc.M106651200. Epub 2001 Jul 24.
Pubmed: 11470804
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Vessey DA, Kelley M, Warren RS: Characterization of the CoA ligases of human liver mitochondria catalyzing the activation of short- and medium-chain fatty acids and xenobiotic carboxylic acids. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):455-62. doi: 10.1016/s0304-4165(99)00088-4.
Pubmed: 10434065
Veenstra-VanderWeele J, Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr: Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry. 2001 Mar;6(2):160-7. doi: 10.1038/sj.mp.4000806.
Pubmed: 11317217
Myles-Worsley M, Tiobech J, Browning SR, Korn J, Goodman S, Gentile K, Melhem N, Byerley W, Faraone SV, Middleton FA: Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet. 2013 Mar;162B(2):87-95. doi: 10.1002/ajmg.b.32125. Epub 2013 Jan 22.
Pubmed: 23341099
Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE: Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011 Jan;121(1):446-53. doi: 10.1172/JCI44474. Epub 2010 Dec 1.
Pubmed: 21123949
Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacin M: Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999 Mar;21(3):293-6. doi: 10.1038/6809.
Pubmed: 10080182
Sperandeo MP, Annunziata P, Ammendola V, Fiorito V, Pepe A, Soldovieri MV, Taglialatela M, Andria G, Sebastio G: Lysinuric protein intolerance: identification and functional analysis of mutations of the SLC7A7 gene. Hum Mutat. 2005 Apr;25(4):410. doi: 10.1002/humu.9323.
Pubmed: 15776427
Sperandeo MP, Andria G, Sebastio G: Lysinuric protein intolerance: update and extended mutation analysis of the SLC7A7 gene. Hum Mutat. 2008 Jan;29(1):14-21. doi: 10.1002/humu.20589.
Pubmed: 17764084
Quackenbush E, Clabby M, Gottesdiener KM, Barbosa J, Jones NH, Strominger JL, Speck S, Leiden JM: Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526-30. doi: 10.1073/pnas.84.18.6526.
Pubmed: 3476959
Teixeira S, Di Grandi S, Kuhn LC: Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574-80.
Pubmed: 3036867
Lumadue JA, Glick AB, Ruddle FH: Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9204-8. doi: 10.1073/pnas.84.24.9204.
Pubmed: 3480538
Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hofmann AF, Wolkoff AW, Meier PJ: Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995 Oct;109(4):1274-82. doi: 10.1016/0016-5085(95)90588-x.
Pubmed: 7557095
Konig J, Cui Y, Nies AT, Keppler D: Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000 Jul 28;275(30):23161-8. doi: 10.1074/jbc.M001448200.
Pubmed: 10779507
Speek M: Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol. 2001 Mar;21(6):1973-85. doi: 10.1128/MCB.21.6.1973-1985.2001.
Pubmed: 11238933
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings