Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Irinotecan Topoisomerase Inhibitor Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2021-05-07
Last Updated: 2023-10-25
Irinotecan is a semi-synthetic analogue of camptothecin which is a topoisomerase IB inhibitor. It is used to treat colorectal cancer. It's mechanism of action against topoisomerase I is that it forms a tertiary complex between the DNA and the topoisomerase I enzyme causing double strand breaks. It first has to be metabolized by liver carboxylesterase 1 into SN-38, which is the active metabolite that inhibits topoisomerase. SN-38 can be inactivated by UGT1A1 into SN-38 glucuronide which upregulated in some individuals leading to irinotecan resistance. Individuals might also have a reduced function variant of UGT1A1 which can lead to increased metabolism of irinotecan and leads to irinotecan toxicity. Toxicity of irinotecan leads to gastrointestinal complications as well as nausea, vomiting and headaches. Irinotecan is administered usually intravenously as a solution.
References
Irinotecan Topoisomerase Inhibitor Pathway References
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S: Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet. 2018 Oct;57(10):1229-1254. doi: 10.1007/s40262-018-0644-7.
Pubmed: 29520731
Paulik A, Nekvindova J, Filip S: Irinotecan toxicity during treatment of metastatic colorectal cancer: focus on pharmacogenomics and personalized medicine. Tumori. 2020 Apr;106(2):87-94. doi: 10.1177/0300891618811283. Epub 2018 Dec 5.
Pubmed: 30514181
Kuhn JG: Pharmacology of irinotecan. Oncology (Williston Park). 1998 Aug;12(8 Suppl 6):39-42.
Pubmed: 9726089
Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA: A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem. 1991 Oct 5;266(28):18832-8.
Pubmed: 1918003
Kroetz DL, McBride OW, Gonzalez FJ: Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry. 1993 Nov 2;32(43):11606-17. doi: 10.1021/bi00094a018.
Pubmed: 8218228
Shibata F, Takagi Y, Kitajima M, Kuroda T, Omura T: Molecular cloning and characterization of a human carboxylesterase gene. Genomics. 1993 Jul;17(1):76-82. doi: 10.1006/geno.1993.1285.
Pubmed: 8406473
Levesque E, Girard H, Journault K, Lepine J, Guillemette C: Regulation of the UGT1A1 bilirubin-conjugating pathway: role of a new splicing event at the UGT1A locus. Hepatology. 2007 Jan;45(1):128-38. doi: 10.1002/hep.21464.
Pubmed: 17187418
Ritter JK, Crawford JM, Owens IS: Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem. 1991 Jan 15;266(2):1043-7.
Pubmed: 1898728
Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS: A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992 Feb 15;267(5):3257-61.
Pubmed: 1339448
Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1997 Apr 28;4(2):141-50. doi: 10.1093/dnares/4.2.141.
Pubmed: 9205841
Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T: Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. DNA Res. 2002 Jun 30;9(3):99-106. doi: 10.1093/dnares/9.3.99.
Pubmed: 12168954
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings