Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Propofol Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2022-02-01
Last Updated: 2023-10-25
Propofol is sedative-hypnotic agent injected intravenously to induce and maintain general anaesthesia causing unconsciousness in order to preform surgery. The injection of Propofol produces hypnosis rapidly within 40 seconds from the start of the injection. The rapid rate of induction is caused by the speed in which Propofol can travel through the blood plasma to the CNS. Recovery from Propofol induced anaesthesia is also rapid, with few side-effects.
In the CNS Propofol inhibits voltage-gated sodium channels in the axon of neurons. This sodium ions from entering the neuron, and therefore prevents depolarization. The prevention of depolarization means the neuron cannot fire, which means it cannot send an action potential to the presynapse, which then cannot release neurotransmitters to signal the next neuron to fire. Propofol further ensures no action potential can occur by activating GABA A receptors. Propofol attaches to subunit beta-2 and subunit beta-3 of the GABA A receptors. GABA A receptors increase the amount of chloride ions entering the postsynaptic neuron which causes hyperpolarization. Hyperpolarization is when the potential is a negative value, which makes depolarization more difficult to achieve, further preventing neurons from firing action potentials. This inactivity in the brain causes a sedative-hypnotic effect.
Propofol also travels to skeletal muscles where it inhibits a voltage-gated sodium channel with protein type 4 subunit alpha. This specific voltage-gated sodium channel is only present in skeletal muscles. Voltage-gated sodium channels in skeletal muscles perpetuate action potentials in the tubule from the depolarization caused by nicotinic Acetylcholine receptors (nAchR). The prevention of action potential in the muscle cell prevents the muscle from contracting.
References
Propofol Pathway References
John R. Carpenter, "Propofol-based anesthetic and method of making same." U.S. Patent US6150423, issued May, 1977.
Hong JY, Kang YS, Kil HK: Anaesthesia for day case excisional breast biopsy: propofol-remifentanil compared with sevoflurane-nitrous oxide. Eur J Anaesthesiol. 2008 Jun;25(6):460-7. doi: 10.1017/S026502150800375X.
Franks NP: Molecular targets underlying general anaesthesia. Br J Pharmacol. 2006 Jan;147 Suppl 1:S72-81.
Haeseler G, Karst M, Foadi N, Gudehus S, Roeder A, Hecker H, Dengler R, Leuwer M: High-affinity blockade of voltage-operated skeletal muscle and neuronal sodium channels by halogenated propofol analogues. Br J Pharmacol. 2008 Sep;155(2):265-75. doi: 10.1038/bjp.2008.255. Epub 2008 Jun 23.
Regev R, Katzir H, Yeheskely-Hayon D, Eytan GD: Modulation of P-glycoprotein-mediated multidrug resistance by acceleration of passive drug permeation across the plasma membrane. FEBS J. 2007 Dec;274(23):6204-14. doi: 10.1111/j.1742-4658.2007.06140.x. Epub 2007 Nov 6.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Schofield PR, Pritchett DB, Sontheimer H, Kettenmann H, Seeburg PH: Sequence and expression of human GABAA receptor alpha 1 and beta 1 subunits. FEBS Lett. 1989 Feb 27;244(2):361-4. doi: 10.1016/0014-5793(89)80563-0.
Pubmed: 2465923
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Garrett KM, Duman RS, Saito N, Blume AJ, Vitek MP, Tallman JF: Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Biochem Biophys Res Commun. 1988 Oct 31;156(2):1039-45. doi: 10.1016/s0006-291x(88)80949-5.
Pubmed: 2847710
Srivastava S, Cohen J, Pevsner J, Aradhya S, McKnight D, Butler E, Johnston M, Fatemi A: A novel variant in GABRB2 associated with intellectual disability and epilepsy. Am J Med Genet A. 2014 Nov;164A(11):2914-21. doi: 10.1002/ajmg.a.36714. Epub 2014 Aug 13.
Pubmed: 25124326
Ishii A, Kang JQ, Schornak CC, Hernandez CC, Shen W, Watkins JC, Macdonald RL, Hirose S: A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy. J Med Genet. 2017 Mar;54(3):202-211. doi: 10.1136/jmedgenet-2016-104083. Epub 2016 Oct 27.
Pubmed: 27789573
Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM, Ragan CI, et al.: Role of the beta subunit in determining the pharmacology of human gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1993 Dec;44(6):1211-8.
Pubmed: 8264558
Jiang S, Yu J, Wang J, Tan Z, Xue H, Feng G, He L, Yang H: Complete genomic sequence of 195 Kb of human DNA containing the gene GABRG2. DNA Seq. 2000;11(5):373-82.
Pubmed: 11328646
Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL, De Jonghe P: A novel GABRG2 mutation associated with febrile seizures. Neurology. 2006 Aug 22;67(4):687-90. doi: 10.1212/01.wnl.0000230145.73496.a2.
Pubmed: 16924025
Shi X, Huang MC, Ishii A, Yoshida S, Okada M, Morita K, Nagafuji H, Yasumoto S, Kaneko S, Kojima T, Hirose S: Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet. 2010 Jun;55(6):375-8. doi: 10.1038/jhg.2010.47. Epub 2010 May 20.
Pubmed: 20485450
Kasai N, Fukushima K, Ueki Y, Prasad S, Nosakowski J, Sugata K, Sugata A, Nishizaki K, Meyer NC, Smith RJ: Genomic structures of SCN2A and SCN3A - candidate genes for deafness at the DFNA16 locus. Gene. 2001 Feb 7;264(1):113-22. doi: 10.1016/s0378-1119(00)00594-1.
Pubmed: 11245985
Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH: Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003 Feb;8(2):186-94. doi: 10.1038/sj.mp.4001241.
Pubmed: 12610651
Striano P, Bordo L, Lispi ML, Specchio N, Minetti C, Vigevano F, Zara F: A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia. 2006 Jan;47(1):218-20. doi: 10.1111/j.1528-1167.2006.00392.x.
Pubmed: 16417554
Bolino A, Seri M, Caroli F, Eubanks J, Srinivasan J, Mandich P, Schenone A, Quattrone A, Romeo G, Catterall WA, Devoto M: Exclusion of the SCN2B gene as candidate for CMT4B. Eur J Hum Genet. 1998 Nov-Dec;6(6):629-34. doi: 10.1038/sj.ejhg.5200220.
Pubmed: 9887383
Eubanks J, Srinivasan J, Dinulos MB, Disteche CM, Catterall WA: Structure and chromosomal localization of the beta2 subunit of the human brain sodium channel. Neuroreport. 1997 Aug 18;8(12):2775-9. doi: 10.1097/00001756-199708180-00025.
Pubmed: 9295116
Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A: The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 2003 Oct;13(10):2265-70. doi: 10.1101/gr.1293003. Epub 2003 Sep 15.
Pubmed: 12975309
Makita N, Sloan-Brown K, Weghuis DO, Ropers HH, George AL Jr: Genomic organization and chromosomal assignment of the human voltage-gated Na+ channel beta 1 subunit gene (SCN1B). Genomics. 1994 Oct;23(3):628-34. doi: 10.1006/geno.1994.1551.
Pubmed: 7851891
Patino GA, Claes LR, Lopez-Santiago LF, Slat EA, Dondeti RS, Chen C, O'Malley HA, Gray CB, Miyazaki H, Nukina N, Oyama F, De Jonghe P, Isom LL: A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci. 2009 Aug 26;29(34):10764-78. doi: 10.1523/JNEUROSCI.2475-09.2009.
Pubmed: 19710327
Baroni D, Picco C, Moran O: A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum Mutat. 2018 Oct;39(10):1402-1415. doi: 10.1002/humu.23589. Epub 2018 Jul 30.
Pubmed: 29992740
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings