Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ipratropium Metabolism
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2022-03-01
Last Updated: 2023-10-25
Ipratropium is taken through inhalation into the lungs. In the lungs it will act topically and then be absorbed into the blood using the transporter solute carrier family 22 member 4 which is highly present in the bronchials. Some will be exhaled as well as some swallowed into the gastrointestinal tract for digestion. Ipratropium in the blood will majorly pass by the liver, but a small amount enters the liver through a drug transporter such as solute carrier family 22 member 4. In the endoplasmic reticulum of the liver Ipratropium is broken down into matabolites. It makes N-isopropylnortropium methobromide, N-isopropylnortropine-ester methobromide and Phenylacetic acid, and N-isopropylnortropium bromide from unknown Cytochrome P450 enzymes. These metabolites leave the liver through a transporter like Multidrug resistance-associated protein 1 into the blood where they will travel to the kidneys, or it is transported into the bile where it travels to the intestines. 80-100% is excreted renally when inhaled. The majority is excreted as unchanged Ipratropium.
References
Ipratropium Metabolism References
Mottais, Angélique & Le Gall, Tony & Sibiril, Yann & Ravel, Julian & Laurent, Véronique & d'Arbonneau, Frédérique & Montier, Tristan. (2017). Enhancement of lung gene delivery after aerosol: A new strategy using non-viral complexes with antibacterial properties. Bioscience Reports. 37. BSR20170618. 10.1042/BSR20160618.
H Abdine F Belal H, A Al-Badr A: Ipratropium bromide: drug metabolism and pharmacokinetics. Profiles Drug Subst Excip Relat Methodol. 2003;30:117-22. doi: 10.1016/S0099-5428(03)30006-1
Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I: Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Hadidi H, Zahlsen K, Idle JR, Cholerton S: A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem Toxicol. 1997 Sep;35(9):903-7.
Pubmed: 9409631
Miles JS, Bickmore W, Brook JD, McLaren AW, Meehan R, Wolf CR: Close linkage of the human cytochrome P450IIA and P450IIB gene subfamilies: implications for the assignment of substrate specificity. Nucleic Acids Res. 1989 Apr 25;17(8):2907-17. doi: 10.1093/nar/17.8.2907.
Pubmed: 2726448
Yamano S, Nagata K, Yamazoe Y, Kato R, Gelboin HV, Gonzalez FJ: cDNA and deduced amino acid sequences of human P450 IIA3 (CYP2A3). Nucleic Acids Res. 1989 Jun 26;17(12):4888. doi: 10.1093/nar/17.12.4888.
Pubmed: 2748347
Yamano S, Tatsuno J, Gonzalez FJ: The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry. 1990 Feb 6;29(5):1322-9. doi: 10.1021/bi00457a031.
Pubmed: 2322567
Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR, et al.: A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet. 1995 Sep;57(3):651-60.
Pubmed: 7668294
Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, Aerts A, Altherr M, Ashworth L, Bajorek E, Black S, Branscomb E, Caenepeel S, Carrano A, Caoile C, Chan YM, Christensen M, Cleland CA, Copeland A, Dalin E, Dehal P, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Garcia C, Georgescu AM, Glavina T, Gomez M, Gonzales E, Groza M, Hammon N, Hawkins T, Haydu L, Ho I, Huang W, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Larionov V, Leem SH, Lopez F, Lou Y, Lowry S, Malfatti S, Martinez D, McCready P, Medina C, Morgan J, Nelson K, Nolan M, Ovcharenko I, Pitluck S, Pollard M, Popkie AP, Predki P, Quan G, Ramirez L, Rash S, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, She X, Smith D, Slezak T, Solovyev V, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wagner M, Wheeler J, Wu K, Xie G, Yang J, Dubchak I, Furey TS, DeJong P, Dickson M, Gordon D, Eichler EE, Pennacchio LA, Richardson P, Stubbs L, Rokhsar DS, Myers RM, Rubin EM, Lucas SM: The DNA sequence and biology of human chromosome 19. Nature. 2004 Apr 1;428(6982):529-35. doi: 10.1038/nature02399.
Pubmed: 15057824
Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X: Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000 Sep 15;60(18):5074-9.
Pubmed: 11016631
Cauffiez C, Lo-Guidice JM, Quaranta S, Allorge D, Chevalier D, Cenee S, Hamdan R, Lhermitte M, Lafitte JJ, Libersa C, Colombel JF, Stucker I, Broly F: Genetic polymorphism of the human cytochrome CYP2A13 in a French population: implication in lung cancer susceptibility. Biochem Biophys Res Commun. 2004 Apr 30;317(2):662-9. doi: 10.1016/j.bbrc.2004.03.092.
Pubmed: 15063809
Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM: Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics. 2001 Jul;11(5):399-415.
Pubmed: 11470993
Lang T, Klein K, Richter T, Zibat A, Kerb R, Eichelbaum M, Schwab M, Zanger UM: Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther. 2004 Oct;311(1):34-43. doi: 10.1124/jpet.104.068973. Epub 2004 Jun 9.
Pubmed: 15190123
Yamano S, Nhamburo PT, Aoyama T, Meyer UA, Inaba T, Kalow W, Gelboin HV, McBride OW, Gonzalez FJ: cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry. 1989 Sep 5;28(18):7340-8. doi: 10.1021/bi00444a029.
Pubmed: 2573390
Komori M, Nishio K, Ohi H, Kitada M, Kamataki T: Molecular cloning and sequence analysis of cDNA containing the entire coding region for human fetal liver cytochrome P-450. J Biochem. 1989 Feb;105(2):161-3. doi: 10.1093/oxfordjournals.jbchem.a122632.
Pubmed: 2722762
Finta C, Zaphiropoulos PG: The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene. 2000 Dec 30;260(1-2):13-23. doi: 10.1016/s0378-1119(00)00470-4.
Pubmed: 11137287
Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine K, Meyer UA, Wojnowski L: Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics. 2001 Mar;11(2):111-21.
Pubmed: 11266076
Hsieh KP, Lin YY, Cheng CL, Lai ML, Lin MS, Siest JP, Huang JD: Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos. 2001 Mar;29(3):268-73.
Pubmed: 11181494
Molowa DT, Schuetz EG, Wrighton SA, Watkins PB, Kremers P, Mendez-Picon G, Parker GA, Guzelian PS: Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5311-5. doi: 10.1073/pnas.83.14.5311.
Pubmed: 3460094
Gonzalez FJ, Schmid BJ, Umeno M, Mcbride OW, Hardwick JP, Meyer UA, Gelboin HV, Idle JR: Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA. 1988 Mar;7(2):79-86. doi: 10.1089/dna.1988.7.79.
Pubmed: 3267210
Schuetz JD, Schuetz EG, Thottassery JV, Guzelian PS, Strom S, Sun D: Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol Pharmacol. 1996 Jan;49(1):63-72.
Pubmed: 8569713
Jounaidi Y, Guzelian PS, Maurel P, Vilarem MJ: Sequence of the 5'-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1741-7. doi: 10.1006/bbrc.1994.2870.
Pubmed: 7811260
Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV, et al.: Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem. 1989 Jun 25;264(18):10388-95.
Pubmed: 2732228
Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG: cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol. 2001 Feb;59(2):386-92. doi: 10.1124/mol.59.2.386.
Pubmed: 11160876
Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, Oscarson M: Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun. 2001 Mar;281(5):1349-55. doi: 10.1006/bbrc.2001.4505.
Pubmed: 11243885
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings