Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Amitriptyline Norepinephrine Reuptake Inhibitor Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2022-03-14
Last Updated: 2023-10-25
Amitriptyline is a tricyclic antidepressant indicated in the treatment of depressive illness, either endogenous or psychotic, and to relieve depression associated anxiety. The non-FDA-approved indications are anxiety, post-traumatic stress disorder, insomnia, chronic pain (diabetic neuropathy, fibromyalgia), irritable bowel syndrome, interstitial cystitis (bladder pain syndrome), migraine prophylaxis, postherpetic neuralgia, and sialorrhea. The three-ring central structure, along with a side chain, is the basic structure of tricyclic antidepressants. The monoamine hypothesis in depression, one of the oldest hypotheses, postulates that deficiencies of serotonin (5-HT) and/or norepinephrine (NE) neurotransmission in the brain lead to depressive effects. Amitriptyline by blocking the reuptake of both serotonin and norepinephrine neurotransmitters.
In adrenergic neurons, norepinephrine is synthesized from tyrosine and stored in synaptic vesicles. Once an action potential arrives at the nerve terminal, calcium channels open, causing the influx of calcium in the cytosol. Calcium then triggers the release of neurotransmitters stored in synaptic vesicles via exocytosis. The norepinephrine is released into the synapse and acts on α1, β1 and β2receptors which contribute to mood improvements. The norepinephrine in the synapse is rapidly taken up by the norepinephrine reuptake transporter on the presynaptic neuron, and is recycled. Amitriptyline inhibits these reuptake transporters on adrenergic neurons, thereby increasing norepinephrine concentration in the synapse. This allows more stimulation of adrenergic needed to improve depressive moods.
The most commonly encountered side effects of amitriptyline include weight gain, gastrointestinal symptoms like constipation, xerostomia, dizziness, headache, and somnolence.
References
Amitriptyline Norepinephrine Reuptake Inhibitor Pathway References
Thour A, Marwaha R: Amitriptyline
Pubmed: 30725910
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Van Oekelen D, Luyten WH, Leysen JE: 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 2003 Apr 18;72(22):2429-49. doi: 10.1016/s0024-3205(03)00141-3.
Pubmed: 12650852
Vaishnavi SN, Nemeroff CB, Plott SJ, Rao SG, Kranzler J, Owens MJ: Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity. Biol Psychiatry. 2004 Feb 1;55(3):320-2. doi: 10.1016/j.biopsych.2003.07.006.
Pubmed: 14744476
Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. doi: 10.1016/s0014-2999(97)01393-9.
Pubmed: 9537821
Bryson HM, Wilde MI: Amitriptyline. A review of its pharmacological properties and therapeutic use in chronic pain states. Drugs Aging. 1996 Jun;8(6):459-76. doi: 10.2165/00002512-199608060-00008.
Pubmed: 8736630
Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T: Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun. 1987 Aug 14;146(3):971-5. doi: 10.1016/0006-291x(87)90742-x.
Pubmed: 2887169
Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J: A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature. 1987 Apr 16-22;326(6114):707-11. doi: 10.1038/326707a0.
Pubmed: 2882428
Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T: Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3. Nucleic Acids Res. 1987 Aug 25;15(16):6733. doi: 10.1093/nar/15.16.6733.
Pubmed: 2888085
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Williams HJ, Bray N, Murphy KC, Cardno AG, Jones LA, Owen MJ: No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH). Am J Med Genet. 1999 Oct 15;88(5):557-9.
Pubmed: 10490716
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Lamouroux A, Vigny A, Faucon Biguet N, Darmon MC, Franck R, Henry JP, Mallet J: The primary structure of human dopamine-beta-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J. 1987 Dec 20;6(13):3931-7.
Pubmed: 3443096
Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR: A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs. FEBS Lett. 1993 Mar 8;318(3):325-30. doi: 10.1016/0014-5793(93)80539-7.
Pubmed: 8095030
Erickson JD, Eiden LE: Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993 Dec;61(6):2314-7. doi: 10.1111/j.1471-4159.1993.tb07476.x.
Pubmed: 8245983
Peter D, Finn JP, Klisak I, Liu Y, Kojis T, Heinzmann C, Roghani A, Sparkes RS, Edwards RH: Chromosomal localization of the human vesicular amine transporter genes. Genomics. 1993 Dec;18(3):720-3.
Pubmed: 7905859
Denier C, Ducros A, Durr A, Eymard B, Chassande B, Tournier-Lasserve E: Missense CACNA1A mutation causing episodic ataxia type 2. Arch Neurol. 2001 Feb;58(2):292-5. doi: 10.1001/archneur.58.2.292.
Pubmed: 11176968
Hans M, Urrutia A, Deal C, Brust PF, Stauderman K, Ellis SB, Harpold MM, Johnson EC, Williams ME: Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys J. 1999 Mar;76(3):1384-400. doi: 10.1016/S0006-3495(99)77300-5.
Pubmed: 10049321
Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996 Nov 1;87(3):543-52. doi: 10.1016/s0092-8674(00)81373-2.
Pubmed: 8898206
Powers PA, Liu S, Hogan K, Gregg RG: Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967-72.
Pubmed: 1385409
Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 1992 Jan;8(1):71-84. doi: 10.1016/0896-6273(92)90109-q.
Pubmed: 1309651
Collin T, Wang JJ, Nargeot J, Schwartz A: Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res. 1993 Jun;72(6):1337-44. doi: 10.1161/01.res.72.6.1337.
Pubmed: 7916667
Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F: Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999 Jan 15;19(2):684-91.
Pubmed: 9880589
Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD: Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000 Apr 21;275(16):12237-42. doi: 10.1074/jbc.275.16.12237.
Pubmed: 10766861
Hobom M, Dai S, Marais E, Lacinova L, Hofmann F, Klugbauer N: Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci. 2000 Apr;12(4):1217-26. doi: 10.1046/j.1460-9568.2000.01009.x.
Pubmed: 10762351
Pacholczyk T, Blakely RD, Amara SG: Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350-4. doi: 10.1038/350350a0.
Pubmed: 2008212
Porzgen P, Bonisch H, Bruss M: Molecular cloning and organization of the coding region of the human norepinephrine transporter gene. Biochem Biophys Res Commun. 1995 Oct 24;215(3):1145-50. doi: 10.1006/bbrc.1995.2582.
Pubmed: 7488042
Porzgen P, Bonisch H, Hammermann R, Bruss M: The human noradrenaline transporter gene contains multiple polyadenylation sites and two alternatively spliced C-terminal exons. Biochim Biophys Acta. 1998 Jul 9;1398(3):365-70. doi: 10.1016/s0167-4781(98)00072-4.
Pubmed: 9655936
Hirasawa A, Horie K, Tanaka T, Takagaki K, Murai M, Yano J, Tsujimoto G: Cloning, functional expression and tissue distribution of human cDNA for the alpha 1C-adrenergic receptor. Biochem Biophys Res Commun. 1993 Sep 15;195(2):902-9. doi: 10.1006/bbrc.1993.2130.
Pubmed: 8396931
Weinberg DH, Trivedi P, Tan CP, Mitra S, Perkins-Barrow A, Borkowski D, Strader CD, Bayne M: Cloning, expression and characterization of human alpha adrenergic receptors alpha 1a, alpha 1b and alpha 1c. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1296-304. doi: 10.1006/bbrc.1994.1845.
Pubmed: 8024574
Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R, Lepor H, Hartig PR, Weinshank RL, Branchek TA, et al.: The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol. 1994 Apr;45(4):703-8.
Pubmed: 8183249
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings