Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of N-alpha-Acetyl-L-arginine
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2022-08-31
Last Updated: 2023-10-25
N-alpha-Acetyl-L-arginine, also known as N-alpha-acetylarginine is an uremic toxin which is synthesized by acetylation of arginine. The accumulation of N-a-Acetyl-L-arginine in serum happens in hyperargininemic patients. It is caused by a deficit of arginase in the liver. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylarginine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Many N-acetylamino acids, including N-acetylarginine are classified as uremic toxins if present in high abundance in the serum or plasma. Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits. N-alpha-Acetyl-L-arginine serum levels (and other guanidino compounds) were elevated of all the hyperargininemic patients are higher than the normal range. Untreated hyperargininemic patients have the highest guanidino compound levels in cerebrospinal fluid. N-alpha-Acetyl-L-arginine is also increased in the urine of hyperargininemic patients. N-alpha-Acetyl-L-arginine is one of the guanidino compounds found elevated in the serum of hemodialyzed renal insufficient (uremic) pediatric patients.
N-a-Acetyl-L-arginine is synthesized from arginine which is most often synthesized through the uric acid cycle or through the consumption of arginine in protein rich foods. Glutamine is consumed through food and taken into the blood through the intestines. It is transported to the liver where it is transported in via an amino acid transport. Glutamine is then transported into the mitochondria by the transporter glutamate antiporter SLC25A12, mitochondrial. In the mitochondria it is catalyzed by Glutaminase liver isoform, mitochondrial into glutamic acid. Glutamic acid is carboxylated into 1-Pyrroline-5-carboxylic acid by the enzyme Delta-1-pyrroline-5-carboxylate synthase. 1-Pyrroline-5-carboxylic acid with glutaric acid synthesize Oxoglutaric acid and ornithine with the enzyme Ornithine aminotransferase, mitochondrial. Ornithine and Carbamoyl phosphate are catalyzed by the enzyme ornithine carbamoyltransferase, mitochondrial to synthesize citrulline. Citrulline is transported out of the mitochondria into the cytosol by a mitochondrial transporter. Arginnosuccinate is synthesized from citrulline and aspartic acid by the enzyme argininosuccinate synthase. That is catalyzed by argininosuccinate lyase to produce arginine and fumaric acid.
Arginine accumulates because it cannot be catalyzed into Urea and Ornithine. The accumulated arginine is acetylated into N-alpha-Acetyl-L-arginine which is transported into the blood. In the blood it works as a uremic toxin to cause kidney damage, cardiovascular disease and neurological deficits.
References
Metabolism and Physiological Effects of N-alpha-Acetyl-L-arginine References
Paulusma CC, Lamers WH, Broer S, van de Graaf SFJ: Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol. 2022 Jul;201:115074. doi: 10.1016/j.bcp.2022.115074. Epub 2022 May 11.
Pubmed: 35568239
Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. doi: 10.1086/500563. Epub 2006 Jan 18.
Pubmed: 16465618
Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015.
Pubmed: 26317986
Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8.
Pubmed: 20613759
Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20.
Pubmed: 18287557
Aral B, Schlenzig JS, Liu G, Kamoun P: Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. C R Acad Sci III. 1996 Mar;319(3):171-8.
Pubmed: 8761662
Hu CA, Lin WW, Obie C, Valle D: Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem. 1999 Mar 5;274(10):6754-62. doi: 10.1074/jbc.274.10.6754.
Pubmed: 10037775
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Gomez-Fabre PM, Aledo JC, Del Castillo-Olivares A, Alonso FJ, Nunez De Castro I, Campos JA, Marquez J: Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem J. 2000 Jan 15;345 Pt 2:365-75.
Pubmed: 10620514
Perez-Gomez C, Mates JM, Gomez-Fabre PM, del Castillo-Olivares A, Alonso FJ, Marquez J: Genomic organization and transcriptional analysis of the human l-glutaminase gene. Biochem J. 2003 Mar 15;370(Pt 3):771-84. doi: 10.1042/BJ20021445.
Pubmed: 12444921
Inana G, Totsuka S, Redmond M, Dougherty T, Nagle J, Shiono T, Ohura T, Kominami E, Katunuma N: Molecular cloning of human ornithine aminotransferase mRNA. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1203-7. doi: 10.1073/pnas.83.5.1203.
Pubmed: 3456579
Ramesh V, Shaffer MM, Allaire JM, Shih VE, Gusella JF: Investigation of gyrate atrophy using a cDNA clone for human ornithine aminotransferase. DNA. 1986 Dec;5(6):493-501.
Pubmed: 3816496
Kobayashi T, Nishii M, Takagi Y, Titani K, Matsuzawa T: Molecular cloning and nucleotide sequence analysis of mRNA for human kidney ornithine aminotransferase. An examination of ornithine aminotransferase isozymes between liver and kidney. FEBS Lett. 1989 Sep 25;255(2):300-4. doi: 10.1016/0014-5793(89)81110-x.
Pubmed: 2507357
Horwich AL, Fenton WA, Williams KR, Kalousek F, Kraus JP, Doolittle RF, Konigsberg W, Rosenberg LE: Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science. 1984 Jun 8;224(4653):1068-74. doi: 10.1126/science.6372096.
Pubmed: 6372096
Hata A, Tsuzuki T, Shimada K, Takiguchi M, Mori M, Matsuda I: Structure of the human ornithine transcarbamylase gene. J Biochem. 1988 Feb;103(2):302-8. doi: 10.1093/oxfordjournals.jbchem.a122265.
Pubmed: 2836378
Bock HG, Su TS, O'Brien WE, Beaudet AL: Sequence for human argininosuccinate synthetase cDNA. Nucleic Acids Res. 1983 Sep 24;11(18):6505-12. doi: 10.1093/nar/11.18.6505.
Pubmed: 6194510
Freytag SO, Bock HG, Beaudet AL, O'Brien WE: Molecular structures of human argininosuccinate synthetase pseudogenes. Evolutionary and mechanistic implications. J Biol Chem. 1984 Mar 10;259(5):3160-6.
Pubmed: 6321498
Haberle J, Pauli S, Linnebank M, Kleijer WJ, Bakker HD, Wanders RJ, Harms E, Koch HG: Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet. 2002 Apr;110(4):327-33. doi: 10.1007/s00439-002-0686-6. Epub 2002 Mar 1.
Pubmed: 11941481
Matuo S, Tatsuno M, Kobayashi K, Saheki T, Miyata T, Iwanaga S, Amaya Y, Mori M: Isolation of cDNA clones of human argininosuccinate lyase and corrected amino acid sequence. FEBS Lett. 1988 Jul 18;234(2):395-9. doi: 10.1016/0014-5793(88)80124-8.
Pubmed: 3391281
O'Brien WE, McInnes R, Kalumuck K, Adcock M: Cloning and sequence analysis of cDNA for human argininosuccinate lyase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7211-5. doi: 10.1073/pnas.83.19.7211.
Pubmed: 3463959
Todd S, McGill JR, McCombs JL, Moore CM, Weider I, Naylor SL: cDNA sequence, interspecies comparison, and gene mapping analysis of argininosuccinate lyase. Genomics. 1989 Jan;4(1):53-9.
Pubmed: 2644168
Sumrada RA, Cooper TG: Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J Bacteriol. 1984 Dec;160(3):1078-87.
Pubmed: 6094498
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Bruls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Segurens B, Aniere F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Menard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufosse-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guerin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quetier F, Waterston R, Hood L, Weissenbach J: The DNA sequence and analysis of human chromosome 14. Nature. 2003 Feb 6;421(6923):601-7. doi: 10.1038/nature01348. Epub 2003 Jan 1.
Pubmed: 12508121
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Hofmann K, Duker M, Fink T, Lichter P, Stoffel W: Human neutral amino acid transporter ASCT1: structure of the gene (SLC1A4) and localization to chromosome 2p13-p15. Genomics. 1994 Nov 1;24(1):20-6. doi: 10.1006/geno.1994.1577.
Pubmed: 7896285
Damseh N, Simonin A, Jalas C, Picoraro JA, Shaag A, Cho MT, Yaacov B, Neidich J, Al-Ashhab M, Juusola J, Bale S, Telegrafi A, Retterer K, Pappas JG, Moran E, Cappell J, Anyane Yeboa K, Abu-Libdeh B, Hediger MA, Chung WK, Elpeleg O, Edvardson S: Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet. 2015 Aug;52(8):541-7. doi: 10.1136/jmedgenet-2015-103104. Epub 2015 Jun 3.
Pubmed: 26041762
Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG: Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem. 1993 Jul 25;268(21):15329-32.
Pubmed: 8101838
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings