Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Brexanolone Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2023-05-29
Last Updated: 2023-10-25
Brexanolone can be found under the brand name Zulresso, and it is the first drug to have ever been approved by the US FDA specifically for the treatment of postpartum depression (PPD) in adult females. Since PPD, like various other types of depression, is characterized by feelings of sadness, worthlessness or guilt, cognitive impairment, and/or possibly suicidal ideation, it is considered a life-threatening condition. Studies have consequently found that PPD can genuinely have profound negative effects on the maternal-infant bond and later infant development. The development and availability of brexanolone for the treatment of PPD in adult females subsequently provides a new and promising therapy where few existed before. In particular, the use of brexanolone in treating PPD is surrounded with promise because it acts in part as a synthetic supplement for possible deficiencies in endogenous brexanolone (allopregnanolone) in postpartum women susceptible to PPD whereas many commonly used anti-depressive medications elicit actions that may modulate the presence and activity of substances like serotonin, norepinephrine, and/or monoamine oxidase but do not mediate activities directly associated with PPD like natural fluctuations in the levels of endogenous neuroactive steroids like allopregnanolone. Brexanolone is a neuroactive steroid that occurs naturally (referred to as natural allopregnanolone) in the body when the female sex hormone progesterone is metabolized. This steroid compound is also believed to exhibit activity as a barbiturate-like, positive allosteric modulator of both synaptic and extrasynaptic GABA(a) receptors. In doing so, brexanolone can enhance the activity of GABA at such receptors by having GABA(a) receptor calcium channels open more often and for longer periods of time. Furthermore, it is believed that brexanolone elicits such action on GABA(a) receptors at a binding site that is distinct from those associated with benzodiazepines. Concurrently, GABA is considered the principal inhibitory neurotransmitter in the human body. When GABA binds to GABA(a) receptors found in neuron synapses, chloride ions are conducted across neuron cell membranes via an ion channel in the receptors. With enough chloride ions conducted, the local, associated neuron membrane potentials are hyperpolarized - making it more difficult or less likely for action potentials to fire, ultimately resulting in less excitation of the neurons, like those involved in neuronal pathways that may be in part responsible for eliciting certain traits of PPD like stress, anxiety, etc. Postpartum depression (PPD) is a mood disorder that can affect women after childbirth. Women with PPD experience feelings of extreme sadness, anxiety, and exhaustion that can make it difficult or even dangerous for them to perform various daily activities or care for themselves or for others, including newborn. Although the exact pathophysiology of PPD remains unknown, it is believed that altered profiles and rapid, unpredictable fluctuations in the blood concentrations of neuroactive steroids like endogenous brexanolone (among others), GABA, and GABA receptors occur in women who are at risk of PPD after childbirth. In particular, within the context of PPD, it is proposed that endogenous brexanolone levels can quickly drop or fluctuate variedly after childbirth and that GABA(a) receptor levels and expression are decreased and down-regulated throughout pregnancy. Such fluctuations and decreases may consequently leave women susceptible to the possibility of PPD. As a medication, synthetic brexanolone can subsequently facilitate a return of positive allosteric modulator GABA(a) modulation while GABA(a) receptor levels and expression gradually return to normal in the time following postpartum. As such, studies suggest the potential for the development of brexanolone as a new mechanism for treatment of PPD that is directly related to the underlying pathophysiology as opposed to many other antidepressant medications whose pharmacological actions are usually entirely unrelated. In the liver, progesterone is metabolized to 5-alpha-dihydroprogesterone (5-alpha-DHP) via 5-alpha-reductase, which is then further metabolized by 3-alpha-hydroxysteroid-dehydrogenase (3-alpha-HSD) to allopregnanolone. Some side effects of using brexanolone may include dizziness, drowsiness, fainting, and a spinning sensation.
References
Brexanolone Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Reddy DS: Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res. 2010;186:113-37. doi: 10.1016/B978-0-444-53630-3.00008-7.
Pubmed: 21094889
Hu AQ, Wang ZM, Lan DM, Fu YM, Zhu YH, Dong Y, Zheng P: Inhibition of evoked glutamate release by neurosteroid allopregnanolone via inhibition of L-type calcium channels in rat medial prefrontal cortex. Neuropsychopharmacology. 2007 Jul;32(7):1477-89. doi: 10.1038/sj.npp.1301261. Epub 2006 Dec 6.
Pubmed: 17151597
Edinoff AN, Odisho AS, Lewis K, Kaskas A, Hunt G, Cornett EM, Kaye AD, Kaye A, Morgan J, Barrilleaux PS, Lewis D, Viswanath O, Urits I: Brexanolone, a GABA(A) Modulator, in the Treatment of Postpartum Depression in Adults: A Comprehensive Review. Front Psychiatry. 2021 Sep 14;12:699740. doi: 10.3389/fpsyt.2021.699740. eCollection 2021.
Pubmed: 34594247
Schofield PR, Pritchett DB, Sontheimer H, Kettenmann H, Seeburg PH: Sequence and expression of human GABAA receptor alpha 1 and beta 1 subunits. FEBS Lett. 1989 Feb 27;244(2):361-4. doi: 10.1016/0014-5793(89)80563-0.
Pubmed: 2465923
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Garrett KM, Duman RS, Saito N, Blume AJ, Vitek MP, Tallman JF: Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Biochem Biophys Res Commun. 1988 Oct 31;156(2):1039-45. doi: 10.1016/s0006-291x(88)80949-5.
Pubmed: 2847710
Srivastava S, Cohen J, Pevsner J, Aradhya S, McKnight D, Butler E, Johnston M, Fatemi A: A novel variant in GABRB2 associated with intellectual disability and epilepsy. Am J Med Genet A. 2014 Nov;164A(11):2914-21. doi: 10.1002/ajmg.a.36714. Epub 2014 Aug 13.
Pubmed: 25124326
Ishii A, Kang JQ, Schornak CC, Hernandez CC, Shen W, Watkins JC, Macdonald RL, Hirose S: A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy. J Med Genet. 2017 Mar;54(3):202-211. doi: 10.1136/jmedgenet-2016-104083. Epub 2016 Oct 27.
Pubmed: 27789573
Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM, Ragan CI, et al.: Role of the beta subunit in determining the pharmacology of human gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1993 Dec;44(6):1211-8.
Pubmed: 8264558
Jiang S, Yu J, Wang J, Tan Z, Xue H, Feng G, He L, Yang H: Complete genomic sequence of 195 Kb of human DNA containing the gene GABRG2. DNA Seq. 2000;11(5):373-82.
Pubmed: 11328646
Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL, De Jonghe P: A novel GABRG2 mutation associated with febrile seizures. Neurology. 2006 Aug 22;67(4):687-90. doi: 10.1212/01.wnl.0000230145.73496.a2.
Pubmed: 16924025
Shi X, Huang MC, Ishii A, Yoshida S, Okada M, Morita K, Nagafuji H, Yasumoto S, Kaneko S, Kojima T, Hirose S: Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet. 2010 Jun;55(6):375-8. doi: 10.1038/jhg.2010.47. Epub 2010 May 20.
Pubmed: 20485450
Bu DF, Tobin AJ: The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67 and GAD65) suggests that they derive from a common ancestral GAD. Genomics. 1994 May 1;21(1):222-8. doi: 10.1006/geno.1994.1246.
Pubmed: 8088791
Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ: Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2115-9. doi: 10.1073/pnas.89.6.2115.
Pubmed: 1549570
Kelly C, Carter ND, Johnstone AP, Nussey SS: Cloning of large isoform of human brain glutamic acid decarboxylase. Lancet. 1991 Dec 7;338(8780):1468-9. doi: 10.1016/0140-6736(91)92780-6.
Pubmed: 1683462
Santos-Cortez RL, Lee K, Giese AP, Ansar M, Amin-Ud-Din M, Rehn K, Wang X, Aziz A, Chiu I, Hussain Ali R, Smith JD, Shendure J, Bamshad M, Nickerson DA, Ahmed ZM, Ahmad W, Riazuddin S, Leal SM: Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. Hum Mol Genet. 2014 Jun 15;23(12):3289-98. doi: 10.1093/hmg/ddu042. Epub 2014 Jan 29.
Pubmed: 24482543
Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH, Wilson RK: The DNA sequence of human chromosome 7. Nature. 2003 Jul 10;424(6945):157-64. doi: 10.1038/nature01782.
Pubmed: 12853948
Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Dohner H, Dohner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC: Human chromosome 7: DNA sequence and biology. Science. 2003 May 2;300(5620):767-72. doi: 10.1126/science.1083423. Epub 2003 Apr 10.
Pubmed: 12690205
Chessler SD, Simonson WT, Sweet IR, Hammerle LP: Expression of the vesicular inhibitory amino acid transporter in pancreatic islet cells: distribution of the transporter within rat islets. Diabetes. 2002 Jun;51(6):1763-71. doi: 10.2337/diabetes.51.6.1763.
Pubmed: 12031963
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M, Stavrides G, Almeida JP, Babbage AK, Bagguley CL, Bailey J, Barlow KF, Bates KN, Beard LM, Beare DM, Beasley OP, Bird CP, Blakey SE, Bridgeman AM, Brown AJ, Buck D, Burrill W, Butler AP, Carder C, Carter NP, Chapman JC, Clamp M, Clark G, Clark LN, Clark SY, Clee CM, Clegg S, Cobley VE, Collier RE, Connor R, Corby NR, Coulson A, Coville GJ, Deadman R, Dhami P, Dunn M, Ellington AG, Frankland JA, Fraser A, French L, Garner P, Grafham DV, Griffiths C, Griffiths MN, Gwilliam R, Hall RE, Hammond S, Harley JL, Heath PD, Ho S, Holden JL, Howden PJ, Huckle E, Hunt AR, Hunt SE, Jekosch K, Johnson CM, Johnson D, Kay MP, Kimberley AM, King A, Knights A, Laird GK, Lawlor S, Lehvaslaiho MH, Leversha M, Lloyd C, Lloyd DM, Lovell JD, Marsh VL, Martin SL, McConnachie LJ, McLay K, McMurray AA, Milne S, Mistry D, Moore MJ, Mullikin JC, Nickerson T, Oliver K, Parker A, Patel R, Pearce TA, Peck AI, Phillimore BJ, Prathalingam SR, Plumb RW, Ramsay H, Rice CM, Ross MT, Scott CE, Sehra HK, Shownkeen R, Sims S, Skuce CD, Smith ML, Soderlund C, Steward CA, Sulston JE, Swann M, Sycamore N, Taylor R, Tee L, Thomas DW, Thorpe A, Tracey A, Tromans AC, Vaudin M, Wall M, Wallis JM, Whitehead SL, Whittaker P, Willey DL, Williams L, Williams SA, Wilming L, Wray PW, Hubbard T, Durbin RM, Bentley DR, Beck S, Rogers J: The DNA sequence and comparative analysis of human chromosome 20. Nature. 2001 Dec 20-27;414(6866):865-71. doi: 10.1038/414865a.
Pubmed: 11780052
Denier C, Ducros A, Durr A, Eymard B, Chassande B, Tournier-Lasserve E: Missense CACNA1A mutation causing episodic ataxia type 2. Arch Neurol. 2001 Feb;58(2):292-5. doi: 10.1001/archneur.58.2.292.
Pubmed: 11176968
Hans M, Urrutia A, Deal C, Brust PF, Stauderman K, Ellis SB, Harpold MM, Johnson EC, Williams ME: Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys J. 1999 Mar;76(3):1384-400. doi: 10.1016/S0006-3495(99)77300-5.
Pubmed: 10049321
Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996 Nov 1;87(3):543-52. doi: 10.1016/s0092-8674(00)81373-2.
Pubmed: 8898206
Andersson S, Russell DW: Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc Natl Acad Sci U S A. 1990 May;87(10):3640-4. doi: 10.1073/pnas.87.10.3640.
Pubmed: 2339109
Jenkins EP, Hsieh CL, Milatovich A, Normington K, Berman DM, Francke U, Russell DW: Characterization and chromosomal mapping of a human steroid 5 alpha-reductase gene and pseudogene and mapping of the mouse homologue. Genomics. 1991 Dec;11(4):1102-12.
Pubmed: 1686016
Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, Fu G, Zhang QH, Gu BW, Dai M, Mao YF, Gao GF, Rong R, Ye M, Zhou J, Xu SH, Gu J, Shi JX, Jin WR, Zhang CK, Wu TM, Huang GY, Chen Z, Chen MD, Chen JL: Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9543-8. doi: 10.1073/pnas.160270997.
Pubmed: 10931946
Qin KN, New MI, Cheng KC: Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):673-9.
Pubmed: 8274401
Khanna M, Qin KN, Wang RW, Cheng KC: Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3 alpha-hydroxysteroid dehydrogenases. J Biol Chem. 1995 Aug 25;270(34):20162-8. doi: 10.1074/jbc.270.34.20162.
Pubmed: 7650035
Khanna M, Qin KN, Cheng KC: Distribution of 3 alpha-hydroxysteroid dehydrogenase in rat brain and molecular cloning of multiple cDNAs encoding structurally related proteins in humans. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):41-6.
Pubmed: 7626489
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings