Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Duloxetine SNRI - Serotonin reuptake Inhibition Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2023-07-10
Last Updated: 2023-11-27
Duloxetine is a serotonin norepinephrine reuptake inhibitor used to treat generalized anxiety disorder, neuropathic pain, osteoarthritis, and stress incontinence. It blocks both sodium dependent serotonin and sodium dependent norepinephrine transporters from removing serotonin and norepinephrine respectively from the synaptic cleft. This allows an accumulation of the neurotransmitters to stimulate their receptors repeatedly increasing the signal of the receptors. In depressed individuals, serotonin and norepinephrine stimulation is low so an increase in serotonin and norepinephrine in the synapses can increase the stimulation of these receptors. The receptors that are being stimulated are 5-HT 2A, 2B, and 2C serotonin receptors and alpha 1 and beta 1 adrenergic receptors. Stimulation of the 2A, 2B and 3C receptor can increase cognitive abilities like learning, appetite, memory, mood and sleep. Sensitization of alpha A1 and beta B1 adrenergic receptors also improve cognitive function, fatigue, sleep and the immune system. In addition to its general SNRI properties, duloxetine also increases dopamine levels, specifically in the prefrontal cortex. Due to the involvement of the prefrontal cortex in depression, the actions of duloxetine in this region also contribute to its efficacy in the treatment of depression. However, the mechanism of action does not involve the inhibition of dopamine transporters. The mechanism of action behind the increase in dopamine levels involves the inhibition of norepinephrine transporters. These transporters have a significant affinity for dopamine, resulting in the transporter’s ability to act on both dopamine and norepinephrine. Therefore, inhibition of norepinephrine transporters can lead to an increase in dopamine. This increase in dopamine specifically occurs in the prefrontal cortex, where dopamine transporters are scarce, and reuptake relies more heavily on norepinephrine transporters. Duloxetine has no significant activity for muscarinic, cholinergic, alpha2-adrenergic, or H1 histaminergic receptors
References
Duloxetine SNRI - Serotonin reuptake Inhibition pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Dhaliwal JS, Spurling BC, Molla M: Duloxetine.
Pubmed: 31747213
Boularand S, Darmon MC, Ganem Y, Launay JM, Mallet J: Complete coding sequence of human tryptophan hydroxylase. Nucleic Acids Res. 1990 Jul 25;18(14):4257. doi: 10.1093/nar/18.14.4257.
Pubmed: 2377472
Tipper JP, Citron BA, Ribeiro P, Kaufman S: Cloning and expression of rabbit and human brain tryptophan hydroxylase cDNA in Escherichia coli. Arch Biochem Biophys. 1994 Dec;315(2):445-53. doi: 10.1006/abbi.1994.1523.
Pubmed: 7986090
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR: A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs. FEBS Lett. 1993 Mar 8;318(3):325-30. doi: 10.1016/0014-5793(93)80539-7.
Pubmed: 8095030
Erickson JD, Eiden LE: Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993 Dec;61(6):2314-7. doi: 10.1111/j.1471-4159.1993.tb07476.x.
Pubmed: 8245983
Peter D, Finn JP, Klisak I, Liu Y, Kojis T, Heinzmann C, Roghani A, Sparkes RS, Edwards RH: Chromosomal localization of the human vesicular amine transporter genes. Genomics. 1993 Dec;18(3):720-3.
Pubmed: 7905859
Lesch KP, Wolozin BL, Estler HC, Murphy DL, Riederer P: Isolation of a cDNA encoding the human brain serotonin transporter. J Neural Transm Gen Sect. 1993;91(1):67-72.
Pubmed: 8452685
Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD: Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2542-6. doi: 10.1073/pnas.90.6.2542.
Pubmed: 7681602
Lesch KP, Wolozin BL, Murphy DL, Reiderer P: Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993 Jun;60(6):2319-22. doi: 10.1111/j.1471-4159.1993.tb03522.x.
Pubmed: 7684072
Lappalainen J, Zhang L, Dean M, Oz M, Ozaki N, Yu DH, Virkkunen M, Weight F, Linnoila M, Goldman D: Identification, expression, and pharmacology of a Cys23-Ser23 substitution in the human 5-HT2c receptor gene (HTR2C). Genomics. 1995 May 20;27(2):274-9. doi: 10.1006/geno.1995.1042.
Pubmed: 7557992
Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S: Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1469-78. doi: 10.1016/0006-291x(91)92105-s.
Pubmed: 1722404
Stam NJ, Vanderheyden P, van Alebeek C, Klomp J, de Boer T, van Delft AM, Olijve W: Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT2C receptor. Eur J Pharmacol. 1994 Nov 15;269(3):339-48. doi: 10.1016/0922-4106(94)90042-6.
Pubmed: 7895773
Itoda M, Saito Y, Komamura K, Ueno K, Kamakura S, Ozawa S, Sawada J: Twelve novel single nucleotide polymorphisms in ABCB1/MDR1 among Japanese patients with ventricular tachycardia who were administered amiodarone. Drug Metab Pharmacokinet. 2002;17(6):566-71.
Pubmed: 15618713
Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB: Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986 Nov 7;47(3):381-9. doi: 10.1016/0092-8674(86)90595-7.
Pubmed: 2876781
Chen CJ, Clark D, Ueda K, Pastan I, Gottesman MM, Roninson IB: Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins. J Biol Chem. 1990 Jan 5;265(1):506-14.
Pubmed: 1967175
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings