Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Amitriptyline Serotonin Antagonist Action Pathway
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Drug Action
Created: 2023-08-03
Last Updated: 2023-11-27
Amitriptyline is a tricyclic antidepressant indicated in the treatment of depressive illness, either endogenous or psychotic, and to relieve depression associated anxiety. The non-FDA-approved indications are anxiety, post-traumatic stress disorder, insomnia, chronic pain (diabetic neuropathy, fibromyalgia), irritable bowel syndrome, interstitial cystitis (bladder pain syndrome), migraine prophylaxis, postherpetic neuralgia, and sialorrhea. The three-ring central structure, along with a side chain, is the basic structure of tricyclic antidepressants.
The monoamine hypothesis in depression, one of the oldest hypotheses, postulates that deficiencies of serotonin (5-HT) and/or norepinephrine (NE) neurotransmission in the brain lead to depressive effects. Amitriptyline by blocking the reuptake of both serotonin and norepinephrine neurotransmitters. In serotonergic neurons, serotonin is synthesized from tryptophan and stored in synaptic vesicles. Once an action potential arrives at the nerve terminal, calcium channels open, causing the influx of calcium in the cytosol. Calcium then triggers the release of neurotransmitters stored in synaptic vesicles via exocytosis. The serotonin is released into the synapse and acts on 5HT2A and 5HT2C receptors which are responsible for mood improvements. The serotonin in the synapse is rapidly taken up by the serotonin reuptake transporter on the presynaptic neuron, and is recycled. Amitriptyline inhibits these reuptake transporters on serotonergic neurons, thereby increasing serotonin concentration in the synapse. This allows more stimulation of 5HT2A and 5HT2C receptors needed to improve depressive moods.
References
Amitriptyline Serotonin Antagonist Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Gould GG, Altamirano AV, Javors MA, Frazer A: A comparison of the chronic treatment effects of venlafaxine and other antidepressants on serotonin and norepinephrine transporters. Biol Psychiatry. 2006 Mar 1;59(5):408-14. doi: 10.1016/j.biopsych.2005.07.011. Epub 2005 Sep 2.
Pubmed: 16140280
Troelsen KB, Nielsen EO, Mirza NR: Chronic treatment with duloxetine is necessary for an anxiolytic-like response in the mouse zero maze: the role of the serotonin transporter. Psychopharmacology (Berl). 2005 Oct;181(4):741-50. doi: 10.1007/s00213-005-0032-5. Epub 2005 Sep 29.
Pubmed: 16032412
Vaishnavi SN, Nemeroff CB, Plott SJ, Rao SG, Kranzler J, Owens MJ: Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity. Biol Psychiatry. 2004 Feb 1;55(3):320-2. doi: 10.1016/j.biopsych.2003.07.006.
Pubmed: 14744476
Ushijima K, Sakaguchi H, Sato Y, To H, Koyanagi S, Higuchi S, Ohdo S: Chronopharmacological study of antidepressants in forced swimming test of mice. J Pharmacol Exp Ther. 2005 Nov;315(2):764-70. doi: 10.1124/jpet.105.088849. Epub 2005 Aug 3.
Pubmed: 16079297
Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. doi: 10.1016/s0014-2999(97)01393-9.
Pubmed: 9537821
Werling LL, Keller A, Frank JG, Nuwayhid SJ: A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp Neurol. 2007 Oct;207(2):248-57. doi: 10.1016/j.expneurol.2007.06.013. Epub 2007 Jun 30.
Pubmed: 17689532
Bryson HM, Wilde MI: Amitriptyline. A review of its pharmacological properties and therapeutic use in chronic pain states. Drugs Aging. 1996 Jun;8(6):459-76. doi: 10.2165/00002512-199608060-00008.
Pubmed: 8736630
Boularand S, Darmon MC, Ganem Y, Launay JM, Mallet J: Complete coding sequence of human tryptophan hydroxylase. Nucleic Acids Res. 1990 Jul 25;18(14):4257. doi: 10.1093/nar/18.14.4257.
Pubmed: 2377472
Tipper JP, Citron BA, Ribeiro P, Kaufman S: Cloning and expression of rabbit and human brain tryptophan hydroxylase cDNA in Escherichia coli. Arch Biochem Biophys. 1994 Dec;315(2):445-53. doi: 10.1006/abbi.1994.1523.
Pubmed: 7986090
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Denier C, Ducros A, Durr A, Eymard B, Chassande B, Tournier-Lasserve E: Missense CACNA1A mutation causing episodic ataxia type 2. Arch Neurol. 2001 Feb;58(2):292-5. doi: 10.1001/archneur.58.2.292.
Pubmed: 11176968
Hans M, Urrutia A, Deal C, Brust PF, Stauderman K, Ellis SB, Harpold MM, Johnson EC, Williams ME: Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys J. 1999 Mar;76(3):1384-400. doi: 10.1016/S0006-3495(99)77300-5.
Pubmed: 10049321
Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996 Nov 1;87(3):543-52. doi: 10.1016/s0092-8674(00)81373-2.
Pubmed: 8898206
Powers PA, Liu S, Hogan K, Gregg RG: Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967-72.
Pubmed: 1385409
Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 1992 Jan;8(1):71-84. doi: 10.1016/0896-6273(92)90109-q.
Pubmed: 1309651
Collin T, Wang JJ, Nargeot J, Schwartz A: Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res. 1993 Jun;72(6):1337-44. doi: 10.1161/01.res.72.6.1337.
Pubmed: 7916667
Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F: Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999 Jan 15;19(2):684-91.
Pubmed: 9880589
Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD: Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000 Apr 21;275(16):12237-42. doi: 10.1074/jbc.275.16.12237.
Pubmed: 10766861
Hobom M, Dai S, Marais E, Lacinova L, Hofmann F, Klugbauer N: Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci. 2000 Apr;12(4):1217-26. doi: 10.1046/j.1460-9568.2000.01009.x.
Pubmed: 10762351
Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR: A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs. FEBS Lett. 1993 Mar 8;318(3):325-30. doi: 10.1016/0014-5793(93)80539-7.
Pubmed: 8095030
Erickson JD, Eiden LE: Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993 Dec;61(6):2314-7. doi: 10.1111/j.1471-4159.1993.tb07476.x.
Pubmed: 8245983
Peter D, Finn JP, Klisak I, Liu Y, Kojis T, Heinzmann C, Roghani A, Sparkes RS, Edwards RH: Chromosomal localization of the human vesicular amine transporter genes. Genomics. 1993 Dec;18(3):720-3.
Pubmed: 7905859
Lesch KP, Wolozin BL, Estler HC, Murphy DL, Riederer P: Isolation of a cDNA encoding the human brain serotonin transporter. J Neural Transm Gen Sect. 1993;91(1):67-72.
Pubmed: 8452685
Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD: Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2542-6. doi: 10.1073/pnas.90.6.2542.
Pubmed: 7681602
Lesch KP, Wolozin BL, Murphy DL, Reiderer P: Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993 Jun;60(6):2319-22. doi: 10.1111/j.1471-4159.1993.tb03522.x.
Pubmed: 7684072
Lappalainen J, Zhang L, Dean M, Oz M, Ozaki N, Yu DH, Virkkunen M, Weight F, Linnoila M, Goldman D: Identification, expression, and pharmacology of a Cys23-Ser23 substitution in the human 5-HT2c receptor gene (HTR2C). Genomics. 1995 May 20;27(2):274-9. doi: 10.1006/geno.1995.1042.
Pubmed: 7557992
Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S: Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1469-78. doi: 10.1016/0006-291x(91)92105-s.
Pubmed: 1722404
Stam NJ, Vanderheyden P, van Alebeek C, Klomp J, de Boer T, van Delft AM, Olijve W: Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT2C receptor. Eur J Pharmacol. 1994 Nov 15;269(3):339-48. doi: 10.1016/0922-4106(94)90042-6.
Pubmed: 7895773
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings