Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Gq Histaminic Smooth Muscle Contraction
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-05
Last Updated: 2023-11-27
The H1 receptor is a histamine receptor belonging to the family of rhodopsin-like G-protein-coupled receptors. This receptor is activated by the biogenic amine histamine. It is expressed in smooth muscles, on vascular endothelial cells, in the heart, and in the central nervous system. The H1 receptor is linked to an intracellular G-protein (Gq) that activates phospholipase C and the inositol triphosphate (IP3) signalling pathway. Histamine H1 receptors are activated by endogenous histamine, which is released by neurons that have their cell bodies in the tuberomammillary nucleus of the hypothalamus. Gq protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gq/11 (Gq/G11) family or Gq/11/14/15 family to include closely related family members. G alpha subunits may be referred to as Gq alpha, Gαq, or Gqα. Gq proteins couple to G protein-coupled receptors to activate beta-type phospholipase C (PLC-β) enzymes. PLC-β in turn hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 acts as a second messenger to release stored calcium into the cytoplasm, while DAG acts as a second messenger that activates protein kinase C (PKC). The general function of Gq is to activate intracellular signaling pathways in response to activation of cell surface G protein-coupled receptors (GPCRs). GPCRs function as part of a three-component system of receptor-transducer-effector. The transducer in this system is a heterotrimeric G protein, composed of three subunits: a Gα protein such as Gαq, and a complex of two tightly linked proteins called Gβ and Gγ in a Gβγ complex. When not stimulated by a receptor, Gα is bound to guanosine diphosphate (GDP) and to Gβγ to form the inactive G protein trimer. When the receptor binds an activating ligand outside the cell (such as a hormone or neurotransmitter), the activated receptor acts as a guanine nucleotide exchange factor to promote GDP release from and guanosine triphosphate (GTP) binding to Gα, which drives dissociation of GTP-bound Gα from Gβγ. Gq/11/14/15 proteins all activate beta-type phospholipase C (PLC-β) to signal through calcium and PKC signaling pathways. PLC-β then cleaves a specific plasma membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG remains bound to the membrane, and IP3 is released as a soluble molecule into the cytoplasm. IP3 diffuses to bind to IP3 receptors, a specialized calcium channel in the endoplasmic reticulum (ER). These channels are specific to calcium and only allow the passage of calcium from the ER into the cytoplasm. Since cells actively sequester calcium in the ER to keep cytoplasmic levels low, this release causes the cytosolic concentration of calcium to increase, causing a cascade of intracellular changes and activity through calcium binding proteins and calcium-sensitive processes. The functions of H1 activating the Gq signalling cascade in smooth muscle include ileum contraction and bronchoconstriction mainly.
References
Gq Histaminic Smooth Muscle Contraction References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Gilman AG: G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615-49. doi: 10.1146/annurev.bi.56.070187.003151.
Pubmed: 3113327
Rodbell M: Nobel Lecture. Signal transduction: evolution of an idea. Biosci Rep. 1995 Jun;15(3):117-33. doi: 10.1007/BF01207453.
Pubmed: 7579038
Ichimura K, Jackson RT: H1 and H2 histamine receptors in the in vitro nasal mucosa. Acta Otolaryngol. 1985 May-Jun;99(5-6):610-9. doi: 10.3109/00016488509182268.
Pubmed: 4024912
Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL: International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997 Sep;49(3):253-78.
Pubmed: 9311023
Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Camara F, Ermolaeva O, Henrichsen CN, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle SM, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola JM, Gerlach D, Elhaik E, Graur D, Reese JT, Edgar RC, McEwan JC, Payne GM, Raison JM, Junier T, Kriventseva EV, Eyras E, Plass M, Donthu R, Larkin DM, Reecy J, Yang MQ, Chen L, Cheng Z, Chitko-McKown CG, Liu GE, Matukumalli LK, Song J, Zhu B, Bradley DG, Brinkman FS, Lau LP, Whiteside MD, Walker A, Wheeler TT, Casey T, German JB, Lemay DG, Maqbool NJ, Molenaar AJ, Seo S, Stothard P, Baldwin CL, Baxter R, Brinkmeyer-Langford CL, Brown WC, Childers CP, Connelley T, Ellis SA, Fritz K, Glass EJ, Herzig CT, Iivanainen A, Lahmers KK, Bennett AK, Dickens CM, Gilbert JG, Hagen DE, Salih H, Aerts J, Caetano AR, Dalrymple B, Garcia JF, Gill CA, Hiendleder SG, Memili E, Spurlock D, Williams JL, Alexander L, Brownstein MJ, Guan L, Holt RA, Jones SJ, Marra MA, Moore R, Moore SS, Roberts A, Taniguchi M, Waterman RC, Chacko J, Chandrabose MM, Cree A, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangiani SN, Joshi V, Kovar CL, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Buhay C, Ding Y, Dugan-Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek-Boney K, Fowler GR, Hitchens ME, Lozado RJ, Moen C, Steffen D, Warren JT, Zhang J, Chiu R, Schein JE, Durbin KJ, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell SN, Davis C, Johnson AJ, Lee S, Nazareth LV, Patel BM, Pu LL, Vattathil S, Williams RL Jr, Curry S, Hamilton C, Sodergren E, Wheeler DA, Barris W, Bennett GL, Eggen A, Green RD, Harhay GP, Hobbs M, Jann O, Keele JW, Kent MP, Lien S, McKay SD, McWilliam S, Ratnakumar A, Schnabel RD, Smith T, Snelling WM, Sonstegard TS, Stone RT, Sugimoto Y, Takasuga A, Taylor JF, Van Tassell CP, Macneil MD, Abatepaulo AR, Abbey CA, Ahola V, Almeida IG, Amadio AF, Anatriello E, Bahadue SM, Biase FH, Boldt CR, Carroll JA, Carvalho WA, Cervelatti EP, Chacko E, Chapin JE, Cheng Y, Choi J, Colley AJ, de Campos TA, De Donato M, Santos IK, de Oliveira CJ, Deobald H, Devinoy E, Donohue KE, Dovc P, Eberlein A, Fitzsimmons CJ, Franzin AM, Garcia GR, Genini S, Gladney CJ, Grant JR, Greaser ML, Green JA, Hadsell DL, Hakimov HA, Halgren R, Harrow JL, Hart EA, Hastings N, Hernandez M, Hu ZL, Ingham A, Iso-Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil SS, Khatib H, Kolbehdari D, Kumar CG, Kumar D, Leach R, Lee JC, Li C, Logan KM, Malinverni R, Marques E, Martin WF, Martins NF, Maruyama SR, Mazza R, McLean KL, Medrano JF, Moreno BT, More DD, Muntean CT, Nandakumar HP, Nogueira MF, Olsaker I, Pant SD, Panzitta F, Pastor RC, Poli MA, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs PK, Rincon G, Rodriguez-Osorio N, Rodriguez-Zas SL, Romero NE, Rosenwald A, Sando L, Schmutz SM, Shen L, Sherman L, Southey BR, Lutzow YS, Sweedler JV, Tammen I, Telugu BP, Urbanski JM, Utsunomiya YT, Verschoor CP, Waardenberg AJ, Wang Z, Ward R, Weikard R, Welsh TH Jr, White SN, Wilming LG, Wunderlich KR, Yang J, Zhao FQ: The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009 Apr 24;324(5926):522-8. doi: 10.1126/science.1169588.
Pubmed: 19390049
Henry GD, Trayer IP, Brewer S, Levine BA: The widespread distribution of alpha-N-trimethylalanine as the N-terminal amino acid of light chains from vertebrate striated muscle myosins. Eur J Biochem. 1985 Apr 1;148(1):75-82. doi: 10.1111/j.1432-1033.1985.tb08809.x.
Pubmed: 3979397
Kobayashi H, Inoue A, Mikawa T, Kuwayama H, Hotta Y, Masaki T, Ebashi S: Isolation of cDNA for bovine stomach 155 kDa protein exhibiting myosin light chain kinase activity. J Biochem. 1992 Dec;112(6):786-91. doi: 10.1093/oxfordjournals.jbchem.a123976.
Pubmed: 1284247
Kohama K, Okagaki T, Hayakawa K, Lin Y, Ishikawa R, Shimmen T, Inoue A: A novel regulatory effect of myosin light chain kinase from smooth muscle on the ATP-dependent interaction between actin and myosin. Biochem Biophys Res Commun. 1992 May 15;184(3):1204-11. doi: 10.1016/s0006-291x(05)80010-5.
Pubmed: 1534225
Ye LH, Hayakawa K, Kishi H, Imamura M, Nakamura A, Okagaki T, Takagi T, Iwata A, Tanaka T, Kohama K: The structure and function of the actin-binding domain of myosin light chain kinase of smooth muscle. J Biol Chem. 1997 Dec 19;272(51):32182-9. doi: 10.1074/jbc.272.51.32182.
Pubmed: 9405419
Ishiwata H, Katsuma S, Kizaki K, Patel OV, Nakano H, Takahashi T, Imai K, Hirasawa A, Shiojima S, Ikawa H, Suzuki Y, Tsujimoto G, Izaike Y, Todoroki J, Hashizume K: Characterization of gene expression profiles in early bovine pregnancy using a custom cDNA microarray. Mol Reprod Dev. 2003 May;65(1):9-18. doi: 10.1002/mrd.10292.
Pubmed: 12658628
Watterson DM, Sharief F, Vanaman TC: The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem. 1980 Feb 10;255(3):962-75.
Pubmed: 7356670
Laub M, Steppuhn JA, Bluggel M, Immler D, Meyer HE, Jennissen HP: Modulation of calmodulin function by ubiquitin-calmodulin ligase and identification of the responsible ubiquitylation site in vertebrate calmodulin. Eur J Biochem. 1998 Jul 15;255(2):422-31. doi: 10.1046/j.1432-1327.1998.2550422.x.
Pubmed: 9716384
Nukada T, Tanabe T, Takahashi H, Noda M, Haga K, Haga T, Ichiyama A, Kanagawa K, Hiranaga M, Matsuo, et al.: Primary structure of the alpha-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett. 1986 Mar 3;197(1-2):305-10. doi: 10.1016/0014-5793(86)80347-7.
Pubmed: 2419165
Michel T, Winslow JW, Smith JA, Seidman JG, Neer EJ: Molecular cloning and characterization of cDNA encoding the GTP-binding protein alpha i and identification of a related protein, alpha h. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7663-7. doi: 10.1073/pnas.83.20.7663.
Pubmed: 3094012
Petrovski S, Kury S, Myers CT, Anyane-Yeboa K, Cogne B, Bialer M, Xia F, Hemati P, Riviello J, Mehaffey M, Besnard T, Becraft E, Wadley A, Politi AR, Colombo S, Zhu X, Ren Z, Andrews I, Dudding-Byth T, Schneider AL, Wallace G, Rosen ABI, Schelley S, Enns GM, Corre P, Dalton J, Mercier S, Latypova X, Schmitt S, Guzman E, Moore C, Bier L, Heinzen EL, Karachunski P, Shur N, Grebe T, Basinger A, Nguyen JM, Bezieau S, Wierenga K, Bernstein JA, Scheffer IE, Rosenfeld JA, Mefford HC, Isidor B, Goldstein DB: Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet. 2016 May 5;98(5):1001-1010. doi: 10.1016/j.ajhg.2016.03.011. Epub 2016 Apr 21.
Pubmed: 27108799
Steinrucke S, Lohmann K, Domingo A, Rolfs A, Baumer T, Spiegler J, Hartmann C, Munchau A: Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol Genet. 2016 Sep 13;2(5):e106. doi: 10.1212/NXG.0000000000000106. eCollection 2016 Oct.
Pubmed: 27668284
Lohmann K, Masuho I, Patil DN, Baumann H, Hebert E, Steinrucke S, Trujillano D, Skamangas NK, Dobricic V, Huning I, Gillessen-Kaesbach G, Westenberger A, Savic-Pavicevic D, Munchau A, Oprea G, Klein C, Rolfs A, Martemyanov KA: Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet. 2017 Mar 15;26(6):1078-1086. doi: 10.1093/hmg/ddx018.
Pubmed: 28087732
Robishaw JD, Kalman VK, Moomaw CR, Slaughter CA: Existence of two gamma subunits of the G proteins in brain. J Biol Chem. 1989 Sep 25;264(27):15758-61.
Pubmed: 2506169
Gautam N, Baetscher M, Aebersold R, Simon MI: A G protein gamma subunit shares homology with ras proteins. Science. 1989 May 26;244(4907):971-4. doi: 10.1126/science.2499046.
Pubmed: 2499046
Wilcox MD, Schey KL, Busman M, Hildebrandt JD: Determination of the complete covalent structure of the gamma 2 subunit of bovine brain G proteins by mass spectrometry. Biochem Biophys Res Commun. 1995 Jul 17;212(2):367-74. doi: 10.1006/bbrc.1995.1979.
Pubmed: 7626050
Mattera R, Codina J, Crozat A, Kidd V, Woo SL, Birnbaumer L: Identification by molecular cloning of two forms of the alpha-subunit of the human liver stimulatory (GS) regulatory component of adenylyl cyclase. FEBS Lett. 1986 Sep 29;206(1):36-42. doi: 10.1016/0014-5793(86)81336-9.
Pubmed: 3093273
Harris BA: Complete cDNA sequence of a human stimulatory GTP-binding protein alpha subunit. Nucleic Acids Res. 1988 Apr 25;16(8):3585. doi: 10.1093/nar/16.8.3585.
Pubmed: 3131741
Kozasa T, Itoh H, Tsukamoto T, Kaziro Y: Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2081-5. doi: 10.1073/pnas.85.7.2081.
Pubmed: 3127824
Scherer SW, Feinstein DS, Oliveira L, Tsui LC, Pittler SJ: Gene structure and chromosome localization to 7q21.3 of the human rod photoreceptor transducin gamma-subunit gene (GNGT1). Genomics. 1996 Jul 1;35(1):241-3. doi: 10.1006/geno.1996.0346.
Pubmed: 8661128
Tao L, Pandey S, Simon MI, Fong HK: Structure of the bovine transducin gamma subunit gene and analysis of promoter function in transgenic mice. Exp Eye Res. 1993 Apr;56(4):497-507. doi: 10.1006/exer.1993.1063.
Pubmed: 8500562
Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Dohner H, Dohner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC: Human chromosome 7: DNA sequence and biology. Science. 2003 May 2;300(5620):767-72. doi: 10.1126/science.1083423. Epub 2003 Apr 10.
Pubmed: 12690205
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0126962
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings