Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Muscular Gq Protien Cascade
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-06
Last Updated: 2023-11-27
G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their activity is regulated by factors that control their ability to bind to and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). When they are bound to GTP, they are 'on', and, when they are bound to GDP, they are 'off'. G proteins belong to the larger group of enzymes called GTPases. Heterotrimeric G proteins located within the cell are activated by G protein-coupled receptors (GPCRs) that span the cell membrane. Signaling molecules bind to a domain of the GPCR located outside the cell, and an intracellular GPCR domain then in turn activates a particular G protein. Some active-state GPCRs have also been shown to be "pre-coupled" with G proteins, whereas in other cases a collision coupling mechanism is thought to occur. The G protein triggers a cascade of further signaling events that finally results in a change in cell function. G protein-coupled receptors and G proteins working together transmit signals from many hormones, neurotransmitters, and other signaling factors. G proteins regulate metabolic enzymes, ion channels, transporter proteins, and other parts of the cell machinery, controlling transcription, motility, contractility, and secretion, which in turn regulate diverse systemic functions such as embryonic development, learning and memory, and homeostasis. Receptor-activated G proteins are bound to the inner surface of the cell membrane. They consist of the Gα and the tightly associated Gβγ subunits. There are four main families of Gα subunits: Gαs (G stimulatory), Gαi (G inhibitory), Gαq/11, and Gα12/13. They behave differently in the recognition of the effector molecule, but share a similar mechanism of activation. When a ligand activates the G protein-coupled receptor, it induces a conformational change in the receptor that allows the receptor to function as a guanine nucleotide exchange factor (GEF) that exchanges GDP for GTP. The GTP (or GDP) is bound to the Gα subunit in the traditional view of heterotrimeric GPCR activation. This exchange triggers the dissociation of the Gα subunit (which is bound to GTP) from the Gβγ dimer and the receptor as a whole. Both Gα-GTP and Gβγ can then activate different signaling cascades (or second messenger pathways) and effector proteins, while the receptor is able to activate the next G protein. Gq protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gq/11 (Gq/G11) family or Gq/11/14/15 family to include closely related family members. G alpha subunits may be referred to as Gq alpha, Gαq, or Gqα. Gq proteins couple to G protein-coupled receptors to activate beta-type phospholipase C (PLC-β) enzymes. PLC-β in turn hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 acts as a second messenger to release stored calcium into the cytoplasm, while DAG acts as a second messenger that activates protein kinase C (PKC). The general function of Gq is to activate intracellular signaling pathways in response to activation of cell surface G protein-coupled receptors (GPCRs). GPCRs function as part of a three-component system of receptor-transducer-effector. Gq/11/14/15 proteins all activate beta-type phospholipase C (PLC-β) to signal through calcium and PKC signaling pathways. PLC-β then cleaves a specific plasma membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG remains bound to the membrane, and IP3 is released as a soluble molecule into the cytoplasm. IP3 diffuses to bind to IP3 receptors, a specialized calcium channel in the endoplasmic reticulum (ER). These channels are specific to calcium and only allow the passage of calcium from the ER into the cytoplasm. Since cells actively sequester calcium in the ER to keep cytoplasmic levels low, this release causes the cytosolic concentration of calcium to increase, causing a cascade of intracellular changes and activity through calcium binding proteins and calcium-sensitive processes. DAG works together with released calcium to activate specific isoforms of PKC, which are activated to phosphorylate other molecules, leading to further altered cellular activity.
References
Muscular Gq Protien Cascade References
Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H: Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res. 2000 Apr 28;7(2):111-20. doi: 10.1093/dnares/7.2.111.
Pubmed: 10819326
Kuo IY, Ehrlich BE: Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a006023. doi: 10.1101/cshperspect.a006023.
Pubmed: 25646377
Clapham DE, Neer EJ: G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167-203. doi: 10.1146/annurev.pharmtox.37.1.167.
Pubmed: 9131251
Qin K, Dong C, Wu G, Lambert NA: Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat Chem Biol. 2011 Aug 28;7(10):740-7. doi: 10.1038/nchembio.642.
Pubmed: 21873996
Boltz HH, Sirbu A, Stelzer N, de Lanerolle P, Winkelmann S, Annibale P: The Impact of Membrane Protein Diffusion on GPCR Signaling. Cells. 2022 May 17;11(10):1660. doi: 10.3390/cells11101660.
Pubmed: 35626696
Neves SR, Ram PT, Iyengar R: G protein pathways. Science. 2002 May 31;296(5573):1636-9. doi: 10.1126/science.1071550.
Pubmed: 12040175
Gilman AG: G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615-49. doi: 10.1146/annurev.bi.56.070187.003151.
Pubmed: 3113327
Rodbell M: Nobel Lecture. Signal transduction: evolution of an idea. Biosci Rep. 1995 Jun;15(3):117-33. doi: 10.1007/BF01207453.
Pubmed: 7579038
Ishiwata H, Katsuma S, Kizaki K, Patel OV, Nakano H, Takahashi T, Imai K, Hirasawa A, Shiojima S, Ikawa H, Suzuki Y, Tsujimoto G, Izaike Y, Todoroki J, Hashizume K: Characterization of gene expression profiles in early bovine pregnancy using a custom cDNA microarray. Mol Reprod Dev. 2003 May;65(1):9-18. doi: 10.1002/mrd.10292.
Pubmed: 12658628
Watterson DM, Sharief F, Vanaman TC: The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem. 1980 Feb 10;255(3):962-75.
Pubmed: 7356670
Laub M, Steppuhn JA, Bluggel M, Immler D, Meyer HE, Jennissen HP: Modulation of calmodulin function by ubiquitin-calmodulin ligase and identification of the responsible ubiquitylation site in vertebrate calmodulin. Eur J Biochem. 1998 Jul 15;255(2):422-31. doi: 10.1046/j.1432-1327.1998.2550422.x.
Pubmed: 9716384
Nukada T, Tanabe T, Takahashi H, Noda M, Haga K, Haga T, Ichiyama A, Kanagawa K, Hiranaga M, Matsuo, et al.: Primary structure of the alpha-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett. 1986 Mar 3;197(1-2):305-10. doi: 10.1016/0014-5793(86)80347-7.
Pubmed: 2419165
Michel T, Winslow JW, Smith JA, Seidman JG, Neer EJ: Molecular cloning and characterization of cDNA encoding the GTP-binding protein alpha i and identification of a related protein, alpha h. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7663-7. doi: 10.1073/pnas.83.20.7663.
Pubmed: 3094012
Petrovski S, Kury S, Myers CT, Anyane-Yeboa K, Cogne B, Bialer M, Xia F, Hemati P, Riviello J, Mehaffey M, Besnard T, Becraft E, Wadley A, Politi AR, Colombo S, Zhu X, Ren Z, Andrews I, Dudding-Byth T, Schneider AL, Wallace G, Rosen ABI, Schelley S, Enns GM, Corre P, Dalton J, Mercier S, Latypova X, Schmitt S, Guzman E, Moore C, Bier L, Heinzen EL, Karachunski P, Shur N, Grebe T, Basinger A, Nguyen JM, Bezieau S, Wierenga K, Bernstein JA, Scheffer IE, Rosenfeld JA, Mefford HC, Isidor B, Goldstein DB: Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet. 2016 May 5;98(5):1001-1010. doi: 10.1016/j.ajhg.2016.03.011. Epub 2016 Apr 21.
Pubmed: 27108799
Steinrucke S, Lohmann K, Domingo A, Rolfs A, Baumer T, Spiegler J, Hartmann C, Munchau A: Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol Genet. 2016 Sep 13;2(5):e106. doi: 10.1212/NXG.0000000000000106. eCollection 2016 Oct.
Pubmed: 27668284
Lohmann K, Masuho I, Patil DN, Baumann H, Hebert E, Steinrucke S, Trujillano D, Skamangas NK, Dobricic V, Huning I, Gillessen-Kaesbach G, Westenberger A, Savic-Pavicevic D, Munchau A, Oprea G, Klein C, Rolfs A, Martemyanov KA: Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet. 2017 Mar 15;26(6):1078-1086. doi: 10.1093/hmg/ddx018.
Pubmed: 28087732
Robishaw JD, Kalman VK, Moomaw CR, Slaughter CA: Existence of two gamma subunits of the G proteins in brain. J Biol Chem. 1989 Sep 25;264(27):15758-61.
Pubmed: 2506169
Gautam N, Baetscher M, Aebersold R, Simon MI: A G protein gamma subunit shares homology with ras proteins. Science. 1989 May 26;244(4907):971-4. doi: 10.1126/science.2499046.
Pubmed: 2499046
Wilcox MD, Schey KL, Busman M, Hildebrandt JD: Determination of the complete covalent structure of the gamma 2 subunit of bovine brain G proteins by mass spectrometry. Biochem Biophys Res Commun. 1995 Jul 17;212(2):367-74. doi: 10.1006/bbrc.1995.1979.
Pubmed: 7626050
Mattera R, Codina J, Crozat A, Kidd V, Woo SL, Birnbaumer L: Identification by molecular cloning of two forms of the alpha-subunit of the human liver stimulatory (GS) regulatory component of adenylyl cyclase. FEBS Lett. 1986 Sep 29;206(1):36-42. doi: 10.1016/0014-5793(86)81336-9.
Pubmed: 3093273
Harris BA: Complete cDNA sequence of a human stimulatory GTP-binding protein alpha subunit. Nucleic Acids Res. 1988 Apr 25;16(8):3585. doi: 10.1093/nar/16.8.3585.
Pubmed: 3131741
Kozasa T, Itoh H, Tsukamoto T, Kaziro Y: Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2081-5. doi: 10.1073/pnas.85.7.2081.
Pubmed: 3127824
Scherer SW, Feinstein DS, Oliveira L, Tsui LC, Pittler SJ: Gene structure and chromosome localization to 7q21.3 of the human rod photoreceptor transducin gamma-subunit gene (GNGT1). Genomics. 1996 Jul 1;35(1):241-3. doi: 10.1006/geno.1996.0346.
Pubmed: 8661128
Tao L, Pandey S, Simon MI, Fong HK: Structure of the bovine transducin gamma subunit gene and analysis of promoter function in transgenic mice. Exp Eye Res. 1993 Apr;56(4):497-507. doi: 10.1006/exer.1993.1063.
Pubmed: 8500562
Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Dohner H, Dohner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC: Human chromosome 7: DNA sequence and biology. Science. 2003 May 2;300(5620):767-72. doi: 10.1126/science.1083423. Epub 2003 Apr 10.
Pubmed: 12690205
Codina J, Stengel D, Woo SL, Birnbaumer L: Beta-subunits of the human liver Gs/Gi signal-transducing proteins and those of bovine retinal rod cell transducin are identical. FEBS Lett. 1986 Oct 27;207(2):187-92. doi: 10.1016/0014-5793(86)81486-7.
Pubmed: 3095147
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. doi: 10.1038/nature04727.
Pubmed: 16710414
Yoo SH, Oh YS, Kang MK, Huh YH, So SH, Park HS, Park HY: Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J Biol Chem. 2001 Dec 7;276(49):45806-12. doi: 10.1074/jbc.M107532200. Epub 2001 Oct 2.
Pubmed: 11584008
Marks AR, Tempst P, Chadwick CC, Riviere L, Fleischer S, Nadal-Ginard B: Smooth muscle and brain inositol 1,4,5-trisphosphate receptors are structurally and functionally similar. J Biol Chem. 1990 Dec 5;265(34):20719-22.
Pubmed: 2174422
Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P: Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000 Mar 9;404(6774):197-201. doi: 10.1038/35004606.
Pubmed: 10724174
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0126980
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings