Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Amine Oxidase Serotonin
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-15
Last Updated: 2024-01-21
The monoamine oxidase is an enzyme that catalyzes the oxidative deamination of many amines like serotonin, norepinephrine, epinephrine, and dopamine. There are 2 isoforms of this protein: A and B. The first one is found in cells located in the periphery and breakdown serotonin, norepinephrine, epinephrine, dopamine, and tyramine. The second one, the B isoform, breakdowns phenylethylamine, norepinephrine, epinephrine, dopamine, and tyramine. This isoform is found in the extracellular tissues and mostly in the brain. An amine oxidase is an enzyme that catalyzes the oxidative cleavage of alkylamines into aldehydes and ammonia. Amine oxidases are divided into two subfamilies based on the cofactor they contain. Amine oxidases catalyze oxidative deamination reactions, producing ammonia and an aldehyde. These enzymes are critical to both homeostatic and xenobiotic metabolic pathways and are involved in the biotransformation of aminergic neurotransmitters (such as catecholamines, histamine, and serotonin) as well as toxins and carcinogens in foods and the environment.
The monoamine oxidases (MAOs) are well studied and have been targets for drug therapy for more than 60 years. MAOs are flavin-containing mitochondrial enzymes distributed throughout the body. In humans, two isoenzymes of MAO have been identified, encoded by two genes located on the X chromosome: MAO-A and MAO-B. Each isoenzyme can be distinguished by certain substrate specificities and anatomic distribution (Table 4.9), although MAO-A has the distinction of being the sole catecholamine metabolic enzyme in sympathetic neurons. In neural and other selective tissues, MAOs catalyze the first step in the degradation of catecholamines into their aldehyde intermediaries, which is further processed by catechol-O-methyltransferase.
The ubiquity of biogenic amines and their central role in neural and cardiovascular function make MAOs highly relevant to clinical anesthesia. The interactions between MAO inhibitors and drugs commonly used in anesthesia have been well described. Although genetic polymorphisms in MAO genes exist and are of great interest in the fields of neurology and psychiatry, to date none have been identified that specifically concern the handling of anesthetic agents.
References
Amine Oxidase Serotonin References
Mondovi B, Finazzi Agro A: Structure and function of amine oxidase. Adv Exp Med Biol. 1982;148:141-53. doi: 10.1007/978-1-4615-9281-5_12.
Pubmed: 7124512
June M. Chan, 4 - Drug Metabolism and Pharmacogenetics, Editor(s): Hugh C. Hemmings, Talmage D. Egan, Pharmacology and Physiology for Anesthesia (Second Edition), Elsevier, 2019, Pages 70-90, ISBN 9780323481106, https://doi.org/10.1016/B978-0-323-48110-6.00004-1.
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML: From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules. 2023 Aug 29;28(17):6329. doi: 10.3390/molecules28176329.
Pubmed: 37687158
Darmon MC, Guibert B, Leviel V, Ehret M, Maitre M, Mallet J: Sequence of two mRNAs encoding active rat tryptophan hydroxylase. J Neurochem. 1988 Jul;51(1):312-6. doi: 10.1111/j.1471-4159.1988.tb04871.x.
Pubmed: 3379411
Kim KS, Wessel TC, Stone DM, Carver CH, Joh TH, Park DH: Molecular cloning and characterization of cDNA encoding tryptophan hydroxylase from rat central serotonergic neurons. Brain Res Mol Brain Res. 1991 Mar;9(4):277-83. doi: 10.1016/0169-328x(91)90073-7.
Pubmed: 1645430
Darmon MC, Grima B, Cash CD, Maitre M, Mallet J: Isolation of a rat pineal gland cDNA clone homologous to tyrosine and phenylalanine hydroxylases. FEBS Lett. 1986 Sep 29;206(1):43-6. doi: 10.1016/0014-5793(86)81337-0.
Pubmed: 2875901
Tanaka T, Horio Y, Taketoshi M, Imamura I, Ando-Yamamoto M, Kangawa K, Matsuo H, Kuroda M, Wada H: Molecular cloning and sequencing of a cDNA of rat dopa decarboxylase: partial amino acid homologies with other enzymes synthesizing catecholamines. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8142-6. doi: 10.1073/pnas.86.20.8142.
Pubmed: 2813383
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Albert VR, Lee MR, Bolden AH, Wurzburger RJ, Aguanno A: Distinct promoters direct neuronal and nonneuronal expression of rat aromatic L-amino acid decarboxylase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12053-7. doi: 10.1073/pnas.89.24.12053.
Pubmed: 1465439
Hsu YP, Weyler W, Chen S, Sims KB, Rinehart WB, Utterback MC, Powell JF, Breakefield XO: Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem. 1988 Oct;51(4):1321-4. doi: 10.1111/j.1471-4159.1988.tb03105.x.
Pubmed: 3418353
Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC: cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4934-8. doi: 10.1073/pnas.85.13.4934.
Pubmed: 3387449
Chen ZY, Hotamisligil GS, Huang JK, Wen L, Ezzeddine D, Aydin-Muderrisoglu N, Powell JF, Huang RH, Breakefield XO, Craig I, et al.: Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res. 1991 Aug 25;19(16):4537-41. doi: 10.1093/nar/19.16.4537.
Pubmed: 1886775
Starr TV, Prystay W, Snutch TP: Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5621-5. doi: 10.1073/pnas.88.13.5621.
Pubmed: 1648226
Yu AS, Hebert SC, Brenner BM, Lytton J: Molecular characterization and nephron distribution of a family of transcripts encoding the pore-forming subunit of Ca2+ channels in the kidney. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10494-8. doi: 10.1073/pnas.89.21.10494.
Pubmed: 1279681
Snutch TP, Leonard JP, Gilbert MM, Lester HA, Davidson N: Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci U S A. 1990 May;87(9):3391-5. doi: 10.1073/pnas.87.9.3391.
Pubmed: 1692134
Pragnell M, Sakamoto J, Jay SD, Campbell KP: Cloning and tissue-specific expression of the brain calcium channel beta-subunit. FEBS Lett. 1991 Oct 21;291(2):253-8. doi: 10.1016/0014-5793(91)81296-k.
Pubmed: 1657644
Yang L, Katchman A, Morrow JP, Doshi D, Marx SO: Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J. 2011 Mar;25(3):928-36. doi: 10.1096/fj.10-172353. Epub 2010 Dec 2.
Pubmed: 21127204
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Chu PJ, Best PM: Molecular cloning of calcium channel alpha(2)delta-subunits from rat atria and the differential regulation of their expression by IGF-1. J Mol Cell Cardiol. 2003 Feb;35(2):207-15.
Pubmed: 12606261
Hatano S, Yamashita T, Sekiguchi A, Iwasaki Y, Nakazawa K, Sagara K, Iinuma H, Aizawa T, Fu LT: Molecular and electrophysiological differences in the L-type Ca2+ channel of the atrium and ventricle of rat hearts. Circ J. 2006 May;70(5):610-4. doi: 10.1253/circj.70.610.
Pubmed: 16636499
Julius D, MacDermott AB, Axel R, Jessell TM: Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science. 1988 Jul 29;241(4865):558-64. doi: 10.1126/science.3399891.
Pubmed: 3399891
Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH: Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem. 2003 Jun 13;278(24):21576-83. doi: 10.1074/jbc.M210973200. Epub 2003 Apr 7.
Pubmed: 12682077
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0121640
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings