Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Plasminogen
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-20
Last Updated: 2024-01-21
Plasminogen is a plasma glycoprotein. Plasminogen (PLG) is the zymogen of plasmin, the major enzyme that degrades fibrin clots. In addition to its binding and activation on fibrin clots, PLG also specifically interacts with cell surfaces where it is more efficiently activated by PLG activators, compared with the reaction in solution. This results in association of the broad-spectrum proteolytic activity of plasmin with cell surfaces that functions to promote cell migration. Plasmin is an important enzyme (EC 3.4.21.7) present in blood that degrades many blood plasma proteins, including fibrin clots. The degradation of fibrin is termed fibrinolysis. In humans, the plasmin protein (in the zymogen form of plasminogen) is encoded by the PLG gene. Plasmin is released as a zymogen called plasminogen (PLG) from the liver into the systemic circulation. Two major glycoforms of plasminogen are present in humans - type I plasminogen contains two glycosylation moieties (N-linked to N289 and O-linked to T346), whereas type II plasminogen contains only a single O-linked sugar (O-linked to T346). Type II plasminogen is preferentially recruited to the cell surface over the type I glycoform. Conversely, type I plasminogen appears more readily recruited to blood clots. n circulation, plasminogen adopts a closed, activation-resistant conformation. Upon binding to clots, or to the cell surface, plasminogen adopts an open form that can be converted into active plasmin by a variety of enzymes, including tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), kallikrein, and factor XII (Hageman factor). Fibrin is a cofactor for plasminogen activation by tissue plasminogen activator. Urokinase plasminogen activator receptor (uPAR) is a cofactor for plasminogen activation by urokinase plasminogen activator. The conversion of plasminogen to plasmin involves the cleavage of the peptide bond between Arg-561 and Val-562.
References
Plasminogen References
Miyata T, Iwanaga S, Sakata Y, Aoki N: Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6132-6. doi: 10.1073/pnas.79.20.6132.
Pubmed: 6216475
Forsgren M, Raden B, Israelsson M, Larsson K, Heden LO: Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 1987 Mar 23;213(2):254-60. doi: 10.1016/0014-5793(87)81501-6.
Pubmed: 3030813
Law RH, Caradoc-Davies T, Cowieson N, Horvath AJ, Quek AJ, Encarnacao JA, Steer D, Cowan A, Zhang Q, Lu BG, Pike RN, Smith AI, Coughlin PB, Whisstock JC: The X-ray crystal structure of full-length human plasminogen. Cell Rep. 2012 Mar 29;1(3):185-90. doi: 10.1016/j.celrep.2012.02.012. Epub 2012 Mar 8.
Pubmed: 22832192
Schuster V, Hugle B, Tefs K: Plasminogen deficiency. J Thromb Haemost. 2007 Dec;5(12):2315-22. doi: 10.1111/j.1538-7836.2007.02776.x. Epub 2007 Sep 26.
Pubmed: 17900274
Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K: Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med. 1996 Mar;2(3):287-92. doi: 10.1038/nm0396-287.
Pubmed: 8612226
FOLK JE, GLADNER JA, LEVIN Y: Thrombin-induced formation of co-fibrin. III. Acid degradation studies and summary of sequential evidence on peptide A. J Biol Chem. 1959 Sep;234:2317-20.
Pubmed: 13823737
Timpl R, Fietzek PP, Wachter E, Van Delden V: Disulfide-linked cyanogen bromide peptides of bovine fibrinogen. II. Isolation and sequence analysis of the chain constituents from the amino terminal region. Biochim Biophys Acta. 1977 Feb 22;490(2):420-9. doi: 10.1016/0005-2795(77)90017-4.
Pubmed: 836881
Martinelli RA, Inglis AS, Rubira MR, Hageman TC, Hurrell JG, Leach SJ, Scheraga HA: Amino acid sequences of portions of the alpha and beta chains of bovine fibrinogen. Arch Biochem Biophys. 1979 Jan;192(1):27-32. doi: 10.1016/0003-9861(79)90068-7.
Pubmed: 434821
Chung DW, Rixon MW, MacGillivray RT, Davie EW: Characterization of a cDNA clone coding for the beta chain of bovine fibrinogen. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1466-70. doi: 10.1073/pnas.78.3.1466.
Pubmed: 6262803
Darula Z, Medzihradszky KF: Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics. 2009 Nov;8(11):2515-26. doi: 10.1074/mcp.M900211-MCP200. Epub 2009 Aug 12.
Pubmed: 19674964
Brown WM, Dziegielewska KM, Foreman RC, Saunders NR: Nucleotide and deduced amino acid sequence of a gamma subunit of bovine fibrinogen. Nucleic Acids Res. 1989 Aug 11;17(15):6397. doi: 10.1093/nar/17.15.6397.
Pubmed: 2771651
Sharp JJ, Cassman KG, Doolittle RF: Amino acid sequence of the carboxy-terminal cyanogen bromide fragment from bovine and human fibrinogen gamma-chains. FEBS Lett. 1972 Sep 15;25(2):334-336. doi: 10.1016/0014-5793(72)80517-9.
Pubmed: 11946783
Schaller J, Moser PW, Dannegger-Muller GA, Rosselet SJ, Kampfer U, Rickli EE: Complete amino acid sequence of bovine plasminogen. Comparison with human plasminogen. Eur J Biochem. 1985 Jun 3;149(2):267-78. doi: 10.1111/j.1432-1033.1985.tb08921.x.
Pubmed: 3846532
Malinowski DP, Sadler JE, Davie EW: Characterization of a complementary deoxyribonucleic acid coding for human and bovine plasminogen. Biochemistry. 1984 Aug 28;23(18):4243-50. doi: 10.1021/bi00313a035.
Pubmed: 6148961
Marti T, Schaller J, Rickli EE, Schmid K, Kamerling JP, Gerwig GJ, van Halbeek H, Vliegenthart JF: The N- and O-linked carbohydrate chains of human, bovine and porcine plasminogen. Species specificity in relation to sialylation and fucosylation patterns. Eur J Biochem. 1988 Apr 5;173(1):57-63. doi: 10.1111/j.1432-1033.1988.tb13966.x.
Pubmed: 3356193
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4):R42. doi: 10.1186/gb-2009-10-4-r42. Epub 2009 Apr 24.
Pubmed: 19393038
Katayama K, Ericsson LH, Enfield DL, Walsh KA, Neurath H, Davie EW, Titani K: Comparison of amino acid sequence of bovine coagulation Factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4990-4. doi: 10.1073/pnas.76.10.4990.
Pubmed: 291916
van Dieijen G, Tans G, Rosing J, Hemker HC: The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem. 1981 Apr 10;256(7):3433-42.
Pubmed: 6782101
Guinto ER, Esmon CT, Mann KG, MacGillivray RT: The complete cDNA sequence of bovine coagulation factor V. J Biol Chem. 1992 Feb 15;267(5):2971-8.
Pubmed: 1737753
Xue J, Kalafatis M, Silveira JR, Kung C, Mann KG: Determination of the disulfide bridges in factor Va heavy chain. Biochemistry. 1994 Nov 8;33(44):13109-16. doi: 10.1021/bi00248a021.
Pubmed: 7947716
Adams TE, Hockin MF, Mann KG, Everse SJ: The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8918-23. doi: 10.1073/pnas.0403072101. Epub 2004 Jun 7.
Pubmed: 15184653
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0121653
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings