Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Coagulation
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-20
Last Updated: 2024-01-21
Coagulation of the blood can be initiation from two different pathways that both result in formation of thrombin which converts blood soluble fibrinogen into the insoluble fibrin clot at the site of injury. The intrinsic pathway is activated by trauma inside vasculature and is activated by platelets, exposed endothelium and collagen. In the liver the coagulation factors VII, IX, and X are produced there as they are vitamin K-dependent proteins. Exposed collagen from broken vessels binds to factor XII activating it to XIIa which converts prekallikrein and factor XI to kallikrein and factor XIa respectively. The extrinsic pathway is activated by the external trauma of blood escaping the vasculature system as the membrane-bound protein tissue factor (TF) is exposed to factors VII or VIIa in the plasma forming a strong activator complex. This activator complex of VIIa and TF converts factor X to the activated form. Both the intrinsic and extrinsic pathways lead to the prothrombinase complex as both pathways activate factor X, an important player in the complex. The prothrombinase complex converts prothrombin to thrombin further allowing the conversion of insoluble fibrinogen into fibrin. Fibrin at first is loose and unstable and is stabilized by coagulation factor XIIIa which cross-links them to form the fibrin clot/mesh that stops blood leaking from the vasculature system. The activated proteins are colored orange.
References
Coagulation References
Norris LA: Blood coagulation. Best Pract Res Clin Obstet Gynaecol. 2003 Jun;17(3):369-83. doi: 10.1016/s1521-6934(03)00014-2.
Pubmed: 12787532
van der Meijden PE, Munnix IC, Auger JM, Govers-Riemslag JW, Cosemans JM, Kuijpers MJ, Spronk HM, Watson SP, Renne T, Heemskerk JW: Dual role of collagen in factor XII-dependent thrombus formation. Blood. 2009 Jul 23;114(4):881-90. doi: 10.1182/blood-2008-07-171066. Epub 2009 Apr 16.
Pubmed: 19372258
Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J: Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004 Feb 5;427(6974):537-41. doi: 10.1038/nature02214.
Pubmed: 14765194
Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW: Identification of the gene for vitamin K epoxide reductase. Nature. 2004 Feb 5;427(6974):541-4. doi: 10.1038/nature02254.
Pubmed: 14765195
Wajih N, Sane DC, Hutson SM, Wallin R: Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system. J Biol Chem. 2005 Mar 18;280(11):10540-7. doi: 10.1074/jbc.M413982200. Epub 2005 Jan 7.
Pubmed: 15640149
Romero EE, Deo R, Velazquez-Estades LJ, Roth DA: Cloning, structural organization, and transcriptional activity of the rat vitamin K-dependent gamma-glutamyl carboxylase gene. Biochem Biophys Res Commun. 1998 Jul 30;248(3):783-8. doi: 10.1006/bbrc.1998.8987.
Pubmed: 9704005
Romero EE, Velazquez-Estades LJ, Deo R, Schapiro B, Roth DA: Cloning of rat vitamin K-dependent gamma-glutamyl carboxylase and developmentally regulated gene expression in postimplantation embryos. Exp Cell Res. 1998 Sep 15;243(2):334-46. doi: 10.1006/excr.1998.4151.
Pubmed: 9743593
Wajih N, Sane DC, Hutson SM, Wallin R: The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J Biol Chem. 2004 Jun 11;279(24):25276-83. doi: 10.1074/jbc.M401645200. Epub 2004 Apr 9.
Pubmed: 15075329
Fu Y, Cao Y, Hertzberg KM, Grieninger G: Fibrinogen alpha genes: conservation of bipartite transcripts and carboxy-terminal-extended alpha subunits in vertebrates. Genomics. 1995 Nov 1;30(1):71-6. doi: 10.1006/geno.1995.0010.
Pubmed: 8595905
Crabtree GR, Comeau CM, Fowlkes DM, Fornace AJ Jr, Malley JD, Kant JA: Evolution and structure of the fibrinogen genes. Random insertion of introns or selective loss? J Mol Biol. 1985 Sep 5;185(1):1-19. doi: 10.1016/0022-2836(85)90179-2.
Pubmed: 4046033
Sobczak J, Lotti AM, Taroux P, Duguet M: Molecular cloning of mRNA sequences transiently induced during rat liver regeneration. Exp Cell Res. 1987 Mar;169(1):47-56. doi: 10.1016/0014-4827(87)90223-0.
Pubmed: 3817019
Courtney MA, Bunce LA, Neroni LA, Simpson-Haidaris PJ: Cloning of the complete coding sequence of rat fibrinogen B beta chain cDNA: interspecies conservation of fibrin beta 15-42 primary structure. Blood Coagul Fibrinolysis. 1994 Aug;5(4):487-96.
Pubmed: 7841303
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Fowlkes DM, Mullis NT, Comeau CM, Crabtree GR: Potential basis for regulation of the coordinately expressed fibrinogen genes: homology in the 5' flanking regions. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2313-6. doi: 10.1073/pnas.81.8.2313.
Pubmed: 6232608
Crabtree GR, Kant JA: Organization of the rat gamma-fibrinogen gene: alternative mRNA splice patterns produce the gamma A and gamma B (gamma ') chains of fibrinogen. Cell. 1982 Nov;31(1):159-66. doi: 10.1016/0092-8674(82)90415-9.
Pubmed: 6897622
Morgan JG, Holbrook NJ, Crabtree GR: Nucleotide sequence of the gamma chain gene of rat fibrinogen: conserved intronic sequences. Nucleic Acids Res. 1987 Mar 25;15(6):2774-6. doi: 10.1093/nar/15.6.2774.
Pubmed: 3562236
Kanalas JJ, Makker SP: Identification of the rat Heymann nephritis autoantigen (GP330) as a receptor site for plasminogen. J Biol Chem. 1991 Jun 15;266(17):10825-9.
Pubmed: 1645711
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0121657
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings