Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Coagulation
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2023-09-20
Last Updated: 2024-01-21
Coagulation of the blood can be initiation from two different pathways that both result in formation of thrombin which converts blood soluble fibrinogen into the insoluble fibrin clot at the site of injury. The intrinsic pathway is activated by trauma inside vasculature and is activated by platelets, exposed endothelium and collagen. In the liver the coagulation factors VII, IX, and X are produced there as they are vitamin K-dependent proteins. Exposed collagen from broken vessels binds to factor XII activating it to XIIa which converts prekallikrein and factor XI to kallikrein and factor XIa respectively. The extrinsic pathway is activated by the external trauma of blood escaping the vasculature system as the membrane-bound protein tissue factor (TF) is exposed to factors VII or VIIa in the plasma forming a strong activator complex. This activator complex of VIIa and TF converts factor X to the activated form. Both the intrinsic and extrinsic pathways lead to the prothrombinase complex as both pathways activate factor X, an important player in the complex. The prothrombinase complex converts prothrombin to thrombin further allowing the conversion of insoluble fibrinogen into fibrin. Fibrin at first is loose and unstable and is stabilized by coagulation factor XIIIa which cross-links them to form the fibrin clot/mesh that stops blood leaking from the vasculature system. The activated proteins are colored orange.
References
Coagulation References
van der Meijden PE, Munnix IC, Auger JM, Govers-Riemslag JW, Cosemans JM, Kuijpers MJ, Spronk HM, Watson SP, Renne T, Heemskerk JW: Dual role of collagen in factor XII-dependent thrombus formation. Blood. 2009 Jul 23;114(4):881-90. doi: 10.1182/blood-2008-07-171066. Epub 2009 Apr 16.
Pubmed: 19372258
Norris LA: Blood coagulation. Best Pract Res Clin Obstet Gynaecol. 2003 Jun;17(3):369-83. doi: 10.1016/s1521-6934(03)00014-2.
Pubmed: 12787532
Rehemtulla A, Roth DA, Wasley LC, Kuliopulos A, Walsh CT, Furie B, Furie BC, Kaufman RJ: In vitro and in vivo functional characterization of bovine vitamin K-dependent gamma-carboxylase expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4611-5. doi: 10.1073/pnas.90.10.4611.
Pubmed: 8506307
Wu SM, Cheung WF, Frazier D, Stafford DW: Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science. 1991 Dec 13;254(5038):1634-6. doi: 10.1126/science.1749935.
Pubmed: 1749935
FOLK JE, GLADNER JA, LEVIN Y: Thrombin-induced formation of co-fibrin. III. Acid degradation studies and summary of sequential evidence on peptide A. J Biol Chem. 1959 Sep;234:2317-20.
Pubmed: 13823737
Timpl R, Fietzek PP, Wachter E, Van Delden V: Disulfide-linked cyanogen bromide peptides of bovine fibrinogen. II. Isolation and sequence analysis of the chain constituents from the amino terminal region. Biochim Biophys Acta. 1977 Feb 22;490(2):420-9. doi: 10.1016/0005-2795(77)90017-4.
Pubmed: 836881
Martinelli RA, Inglis AS, Rubira MR, Hageman TC, Hurrell JG, Leach SJ, Scheraga HA: Amino acid sequences of portions of the alpha and beta chains of bovine fibrinogen. Arch Biochem Biophys. 1979 Jan;192(1):27-32. doi: 10.1016/0003-9861(79)90068-7.
Pubmed: 434821
Chung DW, Rixon MW, MacGillivray RT, Davie EW: Characterization of a cDNA clone coding for the beta chain of bovine fibrinogen. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1466-70. doi: 10.1073/pnas.78.3.1466.
Pubmed: 6262803
Darula Z, Medzihradszky KF: Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics. 2009 Nov;8(11):2515-26. doi: 10.1074/mcp.M900211-MCP200. Epub 2009 Aug 12.
Pubmed: 19674964
Brown WM, Dziegielewska KM, Foreman RC, Saunders NR: Nucleotide and deduced amino acid sequence of a gamma subunit of bovine fibrinogen. Nucleic Acids Res. 1989 Aug 11;17(15):6397. doi: 10.1093/nar/17.15.6397.
Pubmed: 2771651
Sharp JJ, Cassman KG, Doolittle RF: Amino acid sequence of the carboxy-terminal cyanogen bromide fragment from bovine and human fibrinogen gamma-chains. FEBS Lett. 1972 Sep 15;25(2):334-336. doi: 10.1016/0014-5793(72)80517-9.
Pubmed: 11946783
Schaller J, Moser PW, Dannegger-Muller GA, Rosselet SJ, Kampfer U, Rickli EE: Complete amino acid sequence of bovine plasminogen. Comparison with human plasminogen. Eur J Biochem. 1985 Jun 3;149(2):267-78. doi: 10.1111/j.1432-1033.1985.tb08921.x.
Pubmed: 3846532
Malinowski DP, Sadler JE, Davie EW: Characterization of a complementary deoxyribonucleic acid coding for human and bovine plasminogen. Biochemistry. 1984 Aug 28;23(18):4243-50. doi: 10.1021/bi00313a035.
Pubmed: 6148961
Marti T, Schaller J, Rickli EE, Schmid K, Kamerling JP, Gerwig GJ, van Halbeek H, Vliegenthart JF: The N- and O-linked carbohydrate chains of human, bovine and porcine plasminogen. Species specificity in relation to sialylation and fucosylation patterns. Eur J Biochem. 1988 Apr 5;173(1):57-63. doi: 10.1111/j.1432-1033.1988.tb13966.x.
Pubmed: 3356193
Kunieda M, Tsuji T, Abbasi AR, Khalaj M, Ikeda M, Miyadera K, Ogawa H, Kunieda T: An insertion mutation of the bovine Fii gene is responsible for factor XI deficiency in Japanese black cattle. Mamm Genome. 2005 May;16(5):383-9.
Pubmed: 16104386
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0121657
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings