Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Nitrogen Metabolism
Escherichia coli E24377A
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-16
Last Updated: 2024-12-16
Nitrogen and nitrogen cycle play an important role in biological process for many microorganisms as catalyzing different reactions. For example, nitrate reduction is used for conversion into ammonia and denitrification, where denitrification is an important cellular respiration process. Nitrogenase enzyme in prokaryotes can fix the atmospheric nitrogen by catalyzing nitrogen fixation (i.e. reduction of nitrogen to ammonia). Nitrate can be introduced into the cytoplasm through a nitrate:nitrite antiporter NarK or a nitrate/nitrite transporter NarU. Nitrate is then reduced by a nitrate reductase resulting in the release of water, an acceptor, and a nitrite. Nitrite can also be introduced into the cytoplasm through a nitrate:nitrite antiporter NarK. Nitrite can be reduced by an NADPH-dependent nitrite reductase resulting in water, NAD, and ammonia. Nitrite can interact with a hydrogen ion and ferrocytochrome c through a cytochrome c-552 ferricytochrome resulting in the release of ferricytochrome c, water, and ammonia. Another process by which ammonia is produced is by a reversible reaction of hydroxylamine with a reduced acceptor through a hydroxylamine reductase. This results in an acceptor, water, and ammonia. Water and carbon dioxide react through a carbonate dehydratase resulting in carbamic acid. This compound reacts spontaneously with hydrogen ion resulting in the release of carbon dioxide and ammonia. Carbon dioxide can interact with water through a carbonic anhydrase resulting in hydrogen carbonate. This compound interacts with cyanate and hydrogen ion through a cyanate hydratase resulting in a carbamic acid. Ammonia can be metabolized by reacting with L-glutamine and ATP-driven glutamine synthetase resulting in ADP, phosphate, and L-glutamine. The latter compound reacts with oxoglutaric acid and hydrogen ion through an NADPH-dependent glutamate synthase resulting in the release of NADP and L-glutamic acid. L-Glutamic acid reacts with water through an NADP-specific glutamate dehydrogenase resulting in the release of oxoglutaric acid, NADPH, hydrogen ion, and ammonia.
References
Nitrogen Metabolism References
Osborne C, Chen LM, Matthews RG: Isolation, cloning, mapping, and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli. J Bacteriol. 1991 Mar;173(5):1729-37. doi: 10.1128/jb.173.5.1729-1737.1991.
Pubmed: 1999390
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
McPherson MJ, Wootton JC: Complete nucleotide sequence of the Escherichia coli gdhA gene. Nucleic Acids Res. 1983 Aug 11;11(15):5257-66. doi: 10.1093/nar/11.15.5257.
Pubmed: 6308576
Jones KM, McPherson MJ, Baron AJ, Mattaj IW, Riordan CL, Wootton JC: The gdhA1 point mutation in Escherichia coli K12 CLR207 alters a key lysine residue of glutamate dehydrogenase. Mol Gen Genet. 1993 Aug;240(2):286-9. doi: 10.1007/bf00277068.
Pubmed: 8355660
Valle F, Becerril B, Chen E, Seeburg P, Heyneker H, Bolivar F: Complete nucleotide sequence of the glutamate dehydrogenase gene from Escherichia coli K-12. Gene. 1984 Feb;27(2):193-9. doi: 10.1016/0378-1119(84)90140-9.
Pubmed: 6373501
Velazquez L, Camarena L, Reyes JL, Bastarrachea F: Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon. J Bacteriol. 1991 May;173(10):3261-4. doi: 10.1128/jb.173.10.3261-3264.1991.
Pubmed: 1673677
Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F: Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene. 1987;60(1):1-11. doi: 10.1016/0378-1119(87)90207-1.
Pubmed: 3326786
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Miranda-Rios J, Sanchez-Pescador R, Urdea M, Covarrubias AA: The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res. 1987 Mar 25;15(6):2757-70. doi: 10.1093/nar/15.6.2757.
Pubmed: 2882477
Covarrubias AA, Bastarrachea F: Nucleotide sequence of the glnA control region of Escherichia coli. Mol Gen Genet. 1983;190(1):171-5. doi: 10.1007/bf00330342.
Pubmed: 6134228
Reitzer LJ, Magasanik B: Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1979-83. doi: 10.1073/pnas.82.7.1979.
Pubmed: 2858855
Darwin A, Hussain H, Griffiths L, Grove J, Sambongi Y, Busby S, Cole J: Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol. 1993 Sep;9(6):1255-65. doi: 10.1111/j.1365-2958.1993.tb01255.x.
Pubmed: 7934939
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J: Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem. 1990 Jul 31;191(2):315-23. doi: 10.1111/j.1432-1033.1990.tb19125.x.
Pubmed: 2200672
Bell AI, Gaston KL, Cole JA, Busby SJ: Cloning of binding sequences for the Escherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP. Nucleic Acids Res. 1989 May 25;17(10):3865-74. doi: 10.1093/nar/17.10.3865.
Pubmed: 2543955
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000778
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings