Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tryptophan Metabolism
Escherichia coli 042
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-26
Last Updated: 2024-12-26
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
References
Tryptophan Metabolism References
Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, VanCleemput M, Wu AM: The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 1981 Dec 21;9(24):6647-68. doi: 10.1093/nar/9.24.6647.
Pubmed: 7038627
Nichols BP, van Cleemput M, Yanofsky C: Nucleotide sequence of Escherichia coli trpE. Anthranilate synthetase component I contains no tryptophan residues. J Mol Biol. 1981 Feb 15;146(1):45-54. doi: 10.1016/0022-2836(81)90365-x.
Pubmed: 7021857
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Horowitz H, Christie GE, Platt T: Nucleotide sequence of the trpD gene, encoding anthranilate synthetase component II of Escherichia coli. J Mol Biol. 1982 Apr 5;156(2):245-56. doi: 10.1016/0022-2836(82)90326-6.
Pubmed: 6283099
Christie GE, Platt T: Gene structure in the tryptophan operon of Escherichia coli. Nucleotide sequence of trpC and the flanking intercistronic regions. J Mol Biol. 1980 Oct 5;142(4):519-30. doi: 10.1016/0022-2836(80)90261-2.
Pubmed: 7007653
Horowitz H, Van Arsdell J, Platt T: Nucleotide sequence of the trpD and trpC genes of Salmonella typhimurium. J Mol Biol. 1983 Oct 5;169(4):775-97. doi: 10.1016/s0022-2836(83)80136-3.
Pubmed: 6355484
Guest JR, Drapeau GR, Carlton BC, Yanofsky C: The amino acid sequence of the A protein (alpha subunit) of the tryptophan synthetase of Escherichia coli. J Biol Chem. 1967 Nov 25;242(22):5442-6.
Pubmed: 4863752
Nichols BP, Yanofsky C: Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5244-8. doi: 10.1073/pnas.76.10.5244.
Pubmed: 388433
Zhao GP, Somerville RL: Genetic and biochemical characterization of the trpB8 mutation of Escherichia coli tryptophan synthase. An amino acid switch at the sharp turn of the trypsin-sensitive "hinge" region diminishes substrate binding and alters solubility. J Biol Chem. 1992 Jan 5;267(1):526-41.
Pubmed: 1309752
Milkman R, Bridges MM: Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics. 1993 Mar;133(3):455-68.
Pubmed: 8095913
Deeley MC, Yanofsky C: Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):787-96.
Pubmed: 6268608
Tokushige M, Tsujimoto N, Oda T, Honda T, Yumoto N, Ito S, Yamamoto M, Kim EH, Hiragi Y: Role of cysteine residues in tryptophanase for monovalent cation-induced activation. Biochimie. 1989 Jun;71(6):711-20. doi: 10.1016/0300-9084(89)90087-4.
Pubmed: 2502187
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y: Primary structure of human placental 5'-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem. 1990 Aug 17;191(3):563-9. doi: 10.1111/j.1432-1033.1990.tb19158.x.
Pubmed: 2129526
Hansen KR, Resta R, Webb CF, Thompson LF: Isolation and characterization of the promoter of the human 5'-nucleotidase (CD73)-encoding gene. Gene. 1995 Dec 29;167(1-2):307-12. doi: 10.1016/0378-1119(95)00574-9.
Pubmed: 8566797
Knapp K, Zebisch M, Pippel J, El-Tayeb A, Muller CE, Strater N: Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure. 2012 Dec 5;20(12):2161-73. doi: 10.1016/j.str.2012.10.001. Epub 2012 Nov 8.
Pubmed: 23142347
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000835
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings