Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fucose and Rhamnose Degradation
Escherichia coli O157:H7 str. TW14359
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-30
Last Updated: 2024-12-30
In E. coli, L-fucose and L-rhamnose are metabolized through parallel pathways. The pathways converge after their corresponding aldolase reactions yielding the same products: lactaldehye. Proton symporter can facilitate the import of alpha-L-rhamnopyranose, methylpentose and beta-L-rhamnopyranose into cell for further metabolism, which allow E.coli to grow with carbon and energy. For alpha-L-rhamnopyranose, it is isomerized by a l-rhamnose mutarotase resulting in a beta-L-rhamnopyranose which is then isomerized into a keto-L-rhamnulose by a l-rhamnose isomerase. The keto-L-rhamnulose spontaneously changes into a L-rhamnulofuranose which is phosphorylated by a rhamnulokinase resulting in a L-rhamnulose 1-phosphate. This compound reacts with a rhamnulose-1-phosphate aldolase resulting in a dihydroxyacetone phosphate and a lactaldehyde. For beta-L-rhamnopyranose, it is isomerized by a L-fucose mutarotase resulting in a alpha-L-fucopyranose. This compound is then isomerized by an L-fucose isomerase resulting in a L-fuculose which in turn gets phosphorylated into an L-fuculose 1-phosphate through an L-fuculokinase. The compound L-fuculose 1-phosphate reacts with an L-fuculose phosphate aldolase through a dihydroxyacetone phosphate and a lactaldehyde. Two pathways can both be used for degrading L-lactaldehyde, which the aerobic pathway facilitates the conversion from L-lactic acid to pyruvic acid via L-lactate dehydrogenase, and the anaerobic pathway facilitates conversion from lactaldehyde to propane-1,2-diol via lactaldehyde reductase. Under aerobic conditions, L-lactaldehyde is oxidized in two steps to pyruvate, thereby channeling all the carbons from fucose or rhamnose into central metabolic pathways. Under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol, which is secreted into the environment.
References
Fucose and Rhamnose Degradation References
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Moralejo P, Egan SM, Hidalgo E, Aguilar J: Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. J Bacteriol. 1993 Sep;175(17):5585-94. doi: 10.1128/jb.175.17.5585-5594.1993.
Pubmed: 8396120
Egan SM, Schleif RF: A regulatory cascade in the induction of rhaBAD. J Mol Biol. 1993 Nov 5;234(1):87-98. doi: 10.1006/jmbi.1993.1565.
Pubmed: 8230210
Holcroft CC, Egan SM: Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon. J Bacteriol. 2000 Jun;182(12):3529-35. doi: 10.1128/jb.182.12.3529-3535.2000.
Pubmed: 10852886
Chen YM, Lu Z, Lin EC: Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. J Bacteriol. 1989 Nov;171(11):6097-105. doi: 10.1128/jb.171.11.6097-6105.1989.
Pubmed: 2553671
Lu Z, Lin EC: The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation. Nucleic Acids Res. 1989 Jun 26;17(12):4883-4. doi: 10.1093/nar/17.12.4883.
Pubmed: 2664711
Seemann JE, Schulz GE: Structure and mechanism of L-fucose isomerase from Escherichia coli. J Mol Biol. 1997 Oct 17;273(1):256-68. doi: 10.1006/jmbi.1997.1280.
Pubmed: 9367760
Hidalgo E, Chen YM, Lin EC, Aguilar J: Molecular cloning and DNA sequencing of the Escherichia coli K-12 ald gene encoding aldehyde dehydrogenase. J Bacteriol. 1991 Oct;173(19):6118-23. doi: 10.1128/jb.173.19.6118-6123.1991.
Pubmed: 1917845
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000846
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings