Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Mannose Metabolism
Escherichia coli O55:H7 str. CB9615
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-30
Last Updated: 2024-12-30
Escherichia coli can utilize D-mannose for its sole carbon and energy source. Alpha-D-mannose is introduced into the cytoplasm through a mannose PTS permease. A phosphotransferase system (PTS) takes up mannose producing D-mannose-6-phosphate which is then converted to D-fructose-6-phosphate via an isomerase. D-fructose-6-phosphate is an intermediate of glycolysis and can enter the pathways of metabolism. The first two enzymes in the pathway catalyze isomerizations that interconvert phosphorylated aldohexoses (β-D-glucose-6-phosphate, D-mannose-6-phosphate) and phosphorylated ketohexoses (D-fructose-6-phosphate). The reaction catalyzed by mannose-6-phosphate isomerase that produces D-mannose-6-phosphate is the first committed step in the biosynthesis of the activated mannose donor GDP-α-D-mannose. D-mannose-6-phosphate is then converted to GDP-D-mannose by the interaction of phosphomannomutase and mannose-1-phosphate guanylyltransferase. GDP-D-mannose produces GDP-L-fucose beginning with the dehydration to GDP-4-dehydro-6-deoxy-D-mannose. GDP-fucose is synthesized by a two step epimerase and reductase of GDP-4-dehydro-6-deoxy-D-mannose. L-fucose then enters the colanic acid building blocks biosynthesis pathway.
References
Mannose Metabolism References
Miles JS, Guest JR: Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene. 1984 Dec;32(1-2):41-8. doi: 10.1016/0378-1119(84)90030-1.
Pubmed: 6397402
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Aoyama K, Haase AM, Reeves PR: Evidence for effect of random genetic drift on G+C content after lateral transfer of fucose pathway genes to Escherichia coli K-12. Mol Biol Evol. 1994 Nov;11(6):829-38. doi: 10.1093/oxfordjournals.molbev.a040166.
Pubmed: 7815923
Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR: Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996 Aug;178(16):4885-93. doi: 10.1128/jb.178.16.4885-4893.1996.
Pubmed: 8759852
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
De Reuse H, Danchin A: The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J Bacteriol. 1988 Sep;170(9):3827-37. doi: 10.1128/jb.170.9.3827-3837.1988.
Pubmed: 2457575
De Reuse H, Roy A, Danchin A: Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene. 1985;35(1-2):199-207. doi: 10.1016/0378-1119(85)90172-6.
Pubmed: 2411636
Saffen DW, Presper KA, Doering TL, Roseman S: Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes. J Biol Chem. 1987 Nov 25;262(33):16241-53.
Pubmed: 2960675
Erni B, Zanolari B, Kocher HP: The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987 Apr 15;262(11):5238-47.
Pubmed: 2951378
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000842
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings